Publications by authors named "Martina Buccirossi"

F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The 2789+5G>A CFTR mutation is a quite frequent defect causing an aberrant splicing and a non-functional CFTR protein. Here we used a CRISPR adenine base editing (ABE) approach to correct the mutation in the absence of DNA double-strand breaks (DSB).

View Article and Find Full Text PDF

Pharmacological modulators of the Ca signaling cascade are important research tools and may translate into novel therapeutic strategies for a series of human diseases. We carried out a screening of a maximally diverse chemical library using the Ca-sensitive Cl channel TMEM16A as a functional readout. We found compounds that were able to potentiate UTP-dependent TMEM16A activation.

View Article and Find Full Text PDF

Background And Purpose: Pharmacological inhibitors of TMEM16A (ANO1), a Ca -activated Cl channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCC -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca .

Experimental Approach: We recorded cytosolic Ca increase elicited with UTP, ionomycin or IP uncaging.

View Article and Find Full Text PDF

The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation.

View Article and Find Full Text PDF