Publications by authors named "Martina Albini"

Kinase D-interacting substrate of 220 kDa (Kidins220) is a transmembrane protein that participates in neural cell survival, maturation, and plasticity. Mutations in the human gene are associated with a neurodevelopmental disorder ('SINO' syndrome) characterized by spastic paraplegia, intellectual disability, and in some cases, autism spectrum disorder. To better understand the pathophysiology of KIDINS220-linked pathologies, in this study, we assessed the sensory processing and social behavior of transgenic mouse lines with reduced Kidins220 expression: the CaMKII-driven conditional knockout (cKO) line, lacking Kidins220 in adult forebrain excitatory neurons, and the Kidins220floxed line, expressing constitutively lower protein levels.

View Article and Find Full Text PDF

PRRT2 is a neuronal protein that controls neuronal excitability and network stability by modulating voltage-gated Na channel (Nav). PRRT2 pathogenic variants cause pleiotropic syndromes including epilepsy, paroxysmal kinesigenic dyskinesia and episodic ataxia attributable to loss-of-function pathogenetic mechanism. Based on the evidence that the transmembrane domain of PRRT2 interacts with Nav1.

View Article and Find Full Text PDF

Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is down-regulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood.

View Article and Find Full Text PDF

Kinase D interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a transmembrane scaffold protein that participates in fundamental aspects of neuronal physiology including cell survival, differentiation, and synaptic plasticity. The Kidins220 constitutive knockout line displays developmental defects in the nervous and cardiovascular systems that lead to embryonic lethality, which has so far precluded the study of this protein in the adult. Moreover, Kidins220 mRNA is tightly regulated by alternative splicing, whose impact on nervous system physiology has not yet been addressed in vivo.

View Article and Find Full Text PDF

Astroglial cells are key to maintain nervous system homeostasis. Neurotrophins are known for their pleiotropic effects on neuronal physiology but also exert complex functions to glial cells. Here, we investigated (i) the signaling competence of mouse embryonic and postnatal primary cortical astrocytes exposed to brain-derived neurotrophic factor (BDNF) and, (ii) the role of kinase D-interacting substrate of 220 kDa (Kidins220), a transmembrane scaffold protein that mediates neurotrophin signaling in neurons.

View Article and Find Full Text PDF

Neuroinflammation is associated with synapse dysfunction and cognitive decline in patients and animal models. One candidate for translating the inflammatory stress into structural and functional changes in neural networks is the transcriptional repressor RE1-silencing transcription factor (REST) that regulates the expression of a wide cluster of neuron-specific genes during neurogenesis and in mature neurons. To study the cellular and molecular pathways activated under inflammatory conditions mimicking the experimental autoimmune encephalomyelitis (EAE) environment, we analyzed REST activity in neuroblastoma cells and mouse cortical neurons treated with activated T cell or microglia supernatant and distinct pro-inflammatory cytokines.

View Article and Find Full Text PDF

Through their ability to modulate synaptic transmission, glial cells are key regulators of neuronal circuit formation and activity. Kidins220/ARMS (kinase-D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning) is one of the key effectors of the neurotrophin pathways in neurons where it is required for differentiation, survival, and plasticity. However, its role in glial cells remains largely unknown.

View Article and Find Full Text PDF

The present work aimed to explore the innovative hypothesis that different transcript/protein variants of a pro-neurotrophin may generate different biological outcomes in a cellular system. Nerve growth factor (NGF) is important in the development and progression of neurodegenerative and cancer conditions. Mature NGF (mNGF) originates from a precursor, proNGF, produced in mouse in two major variants, proNGF-A and proNGF-B.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. Recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Here we study the effect of external physical stimuli-such as millimeter wave radiation-on the induced movement of giant lipid vesicles in suspension containing or not containing iron oxide maghemite (γ-FeO) nanoparticles (MNPs).

View Article and Find Full Text PDF

Our previous study of interaction between low intensity radiation at 53.37GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.

View Article and Find Full Text PDF