Publications by authors named "Martin-Zanca D"

Pain is an alarm mechanism to prevent body damage in response to noxious stimuli. The nerve growth factor (NGF)/TrkA axis plays an essential role as pain mediator, and several clinical trials using antibodies against NGF have yielded promising results, but side effects have precluded their clinical approval. A better understanding of the mechanism of NGF/TrkA-mediated nociception is needed.

View Article and Find Full Text PDF
Article Synopsis
  • Recent findings show that mutations in the VAV1 gene are linked to peripheral T cell lymphoma and non-small-cell lung cancer (NSCLC).
  • Researchers created a gene-edited mouse model to study the impact of a specific VAV1 mutation, which did not cause cancer alone but led to T cell lymphoma when combined with the loss of the Trp53 gene.
  • The study revealed that VAV1 mutations influence tumor development in specific cell types and interact with other mutations, highlighting the complexity of cancer mechanisms.
View Article and Find Full Text PDF

The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out.

View Article and Find Full Text PDF

The development of the nervous system is a temporally and spatially coordinated process that relies on the proper regulation of the genes involved. Neurotrophins and their receptors are directly responsible for the survival and differentiation of sensory and sympathetic neurons; however, it is not fully understood how genes encoding Trk neurotrophin receptors are regulated. Here, we show that rat Bex3 protein specifically regulates TrkA expression by acting at the trkA gene promoter level.

View Article and Find Full Text PDF

Loss of p53 function is a common feature of human cancers and it is required for differentiated tumor cell maintenance; however, it is not known whether sustained inactivation of the p53 pathway is needed for cancer stem cell persistence. Chronic myeloid leukemia (CML) is caused by a chromosome translocation that generates the BCRABL oncogene encoding a constitutively active protein tyrosine kinase. The disease originates in a hematopoietic stem cell and is maintained by leukemic stem cells (LSCs).

View Article and Find Full Text PDF

Nerve growth factor beta (NGF-beta) and its precursor proNGF are important for the differentiation and survival of neurons and dermal keratinocytes. The aim of this study was to determine the role that NGF might play in the differentiation and wound healing of oral mucosa. Cultured normal human oral mucosal keratinocytes expressed mRNA for NGF-beta/proNGF and for their receptors TrkA and p75(NTR).

View Article and Find Full Text PDF

Peroxynitrite is usually considered as a neurotoxic nitric oxide-derivative. However, an increasing body of evidence suggests that, at low concentrations, peroxynitrite affords transient cytoprotection, both in vitro and in vivo. Here, we addressed the signaling mechanism responsible for this effect, and found that rat cortical neurons in primary culture acutely exposed to peroxynitrite (0.

View Article and Find Full Text PDF

To investigate the functions of the p53 tumor suppressor, we created a new knock-in gene replacement mouse model in which the endogenous Trp53 gene is substituted by one encoding p53ER(TAM), a p53 fusion protein whose function is completely dependent on ectopic provision of 4-hydroxytamoxifen. We show here that both tissues in vivo and cells in vitro derived from such mice can be rapidly toggled between wild-type and p53 knockout states. Using this rapid perturbation model, we define the kinetics, dependence, persistence and reversibility of p53-mediated responses to DNA damage in tissues in vivo and to activation of the Ras oncoprotein and stress in vitro.

View Article and Find Full Text PDF

Tactile information is perceived by a heterogeneous population of specialized neurons. Neurotrophin receptors (the receptor tyrosine kinases, Trks) mark the major classes of these sensory neurons: TrkA is expressed in neurons that sense temperature and noxious stimuli, and TrkC is expressed in proprioceptive neurons that sense body position. Neurotrophin signaling through these receptors is required for cell survival.

View Article and Find Full Text PDF

The tyrosine kinase receptors for the neurotrophins (Trk) are a family of transmembrane receptors that regulate the differentiation and survival of different neuronal populations. Neurotrophin binding to Trk leads to the activation of several signalling pathways including a rapid, but moderate, increase in intracellular calcium levels. We have previously described the role of calcium and its sensor protein, calmodulin, in Trk-activated intracellular pathways.

View Article and Find Full Text PDF

The TrkA NGF receptor extracellular region contains three leucine repeats flanked by cysteine clusters and two immunoglobulin-like domains that are required for specific ligand binding. Deletion of the immunoglobulin-like domains abolishes NGF binding and causes ligand independent activation of the receptor. Here we report a specific mutation that increases the binding affinity of the TrkA receptor for NGF.

View Article and Find Full Text PDF

Nerve growth factor (NGF) induces survival and differentiation of the neural crest-derived PC12 cell line. Caveolae are cholesterol-enriched, caveolin-containing plasma membrane microdomains involved in vesicular transport and signal transduction. Here we demonstrate the presence of caveolae in PC12 cells and their involvement in NGF signaling.

View Article and Find Full Text PDF

The extracellular region of the nerve growth factor (NGF) receptor, TrkA, contains two immunoglobulin (Ig)-like domains that are required for specific ligand binding. We have investigated the possible role of these two Ig-like domains in receptor dimerization and activation by using different mutants of the TrkA extracellular region. Deletions of each Ig-like domain, of both, and of the entire extracellular region were made.

View Article and Find Full Text PDF

The trkA proto-oncogene encodes a high-affinity NGF receptor that is essential for the survival, differentiation and maintenance of many neural and non-neural cell types. Altered expression of the trkA gene or trkA receptor malfunction have been implicated in neurodegeneration, tumor progression and oncogenesis. We have cloned and characterized the 5' region of the mouse trkA gene and have identified its promoter.

View Article and Find Full Text PDF

Chick embryo spinal cord motoneurons develop a trophic response to some neurotrophins when they are maintained in culture in the presence of muscle extract. Thus, after 2 days in culture, brain-derived neurotrophic factor (BDNF) promotes motoneuron survival. In the present study we have analyzed the intracellular pathways that may be involved in the BDNF-induced motoneuron survival.

View Article and Find Full Text PDF

To understand the role of neurotrophins in the visual system, we investigated the distribution of both neurotrophins and their receptors within the retina of a fish that has the capacity to spontaneously regenerate its optic nerve axons after lesion. Intact retinas and retinas from tench, whose optic nerve had been crushed, were analyzed by immunohistochemistry and in situ hybridization. Trk receptors were mainly immunolocalized in cells of the inner nuclear and ganglion cell layers, a distribution coincident with that of their mRNAs.

View Article and Find Full Text PDF

Retinal ganglion cells of the fish have the spontaneous capacity to regenerate after nerve crush, a phenomenon known to be facilitated by nerve growth factor (NGF). We have studied the high-affinity NGF receptor TrkA, during the regeneration of the tench (Tinca tinca L.) optic nerve, using immunocytochemical techniques.

View Article and Find Full Text PDF

Nerve growth factor (NGF) initiates its biological effects by promoting the dimerization and activation of the tyrosine kinase receptor TrkA. The requirements for NGF signaling through the TrkA receptor have been defined extensively from studies in immortalized cells, involving transfection of NIH 3T3, COS, and PC12 cells. In the present study, we tested the effects of extracellular and intracellular mutations of TrkA after DNA-mediated transfection in primary cultures of embryonic day 17 hippocampal neurons.

View Article and Find Full Text PDF

The trkC gene encodes the high-affinity receptor for neurotrophin 3 and plays an important role in the regulation of the survival and differentiation of the mammalian nervous system and in heart development. Chromosomal rearrangements of trkC have been recently reported in congenital fibrosarcoma and it has been proposed that abnormal activation of this gene might be involved in tumor development. To facilitate the search for new mutations and rearrangements in the human trkC locus we have partially characterized its genomic organization by restriction mapping and have obtained the complete intron-exon structure.

View Article and Find Full Text PDF

During embryonic development, most neuronal populations undergo a process usually referred to as naturally occurring neuronal death. For motoneurons (MTNs) of the lumbar spinal cord of chick embryos, this process takes place in a well defined period of time, between embryonic days 6 and 10 (E6-E10). Neurotrophins (NTs) are the best characterized family of neurotrophic factors and exert their effects through activation of their specific Trk receptors.

View Article and Find Full Text PDF

Expression of the nerve growth factor (NGF) receptors TrkA and p75(NTR) was found to vary at the surface of PC12 cells in a cell cycle phase-specific manner. This was evidenced by using flow cytometric and microscopic analysis of cell populations labeled with antibodies to the extracellular domains of both receptors. Differential expression of these receptors also was evidenced by biotinylation of surface proteins and Western analysis, using antibodies specific for the extracellular domains of TrkA and p75(NTR).

View Article and Find Full Text PDF

1. Neurotrophins are molecules that regulate the survival, development and maintenance of specific functions in different populations of nerve cells. 2.

View Article and Find Full Text PDF

Survival signalling by ligand-activated tyrosine kinase receptors plays a crucial role in maintaining the balance between cell viability and apoptosis in multicellular organisms. To identify receptor domains and pathways involved in survival signalling, the nerve growth factor receptor TrkA was expressed in Rat-1/MycER fibroblasts. We demonstrate that wt-TrkA receptor delays c-Myc-, U.

View Article and Find Full Text PDF

The nerve growth factor receptor, TrkA, has a critical role in the survival, differentiation, and function of neurons in the peripheral and central nervous systems. Recent studies have demonstrated a strong correlation between abundant expression of TrkA and a favorable prognosis of the pediatric tumor, neuroblastoma. This correlation suggests that TrkA may actively promote growth arrest and differentiation of neuroblastoma tumor cells and may be an important therapeutic target in the treatment of this disease.

View Article and Find Full Text PDF

Target-derived molecules are essential for the maintenance of neuron survival. In the present work, we introduce the electric organ of Torpedo marmorata as a tool for the study of trophic interactions in a polyinervate system. This electric organ maintains a large number of cholinergic terminals on the postsynaptic cell surface.

View Article and Find Full Text PDF