Highly emissive AgS nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at ∼1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that AgS-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 °C through 20 mm thick tissue with low laser irradiation power densities.
View Article and Find Full Text PDFToday, diabetes mellitus is one of the most common diseases that affects the population on a worldwide scale. Patients suffering from this disease are required to control their blood-glucose levels several times a day through invasive methods such as piercing their fingers. Our NaGdF: 5% Er, 3% Nd nanoparticles demonstrate a remarkable ability to detect D-glucose levels by analysing alterations in their red-to-green ratio, since this sensitivity arises from the interaction between the nanoparticles and the OH groups present in the D-glucose molecules, resulting in discernible changes in the emission of the green and red bands.
View Article and Find Full Text PDFAg S nanoparticles (NPs) emerge as a unique system that simultaneously features in vivo near-infrared (NIR) imaging, remote heating, and low toxicity thermal sensing. In this work, their capabilities are extended into the fields of optical coherence tomography (OCT), as contrast agents, and NIR probes in both ex vivo and in vivo experiments in eyeballs. The new dual property for ocular imaging is obtained by the preparation of Ag S NPs ensembles with a biocompatible amphiphilic block copolymer.
View Article and Find Full Text PDFIn nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside.
View Article and Find Full Text PDFFunctionalized upconverting nanoparticles (UCNPs) are promising theragnostic nanomaterials for simultaneous therapeutic and diagnostic purposes. We present two types of non-toxic eosin Y (EY) nanoconjugates derived from UCNPs as novel nanophotosensitizers (nano-PS) and deep-tissue bioimaging agents employing light at 800 nm. This excitation wavelength ensures minimum cell damage, since the absorption of water is negligible, and increases tissue penetration, enhancing the specificity of the photodynamic treatment (PDT).
View Article and Find Full Text PDFThere is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs) provide the strongest signal by CV-OCT. GNSs are functionalized with the cLABL peptide that binds specifically to the ICAM-1 molecule upregulated in the first stage of atherosclerosis.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is an imaging technique currently used in clinical practice to obtain optical biopsies of different biological tissues in a minimally invasive way. Among the contrast agents proposed to increase the efficacy of this imaging method, gold nanoshells (GNSs) are the best performing ones. However, their preparation is generally time-consuming, and they are intrinsically costly to produce.
View Article and Find Full Text PDFLifetime multiplexed imaging refers to the simultaneous labeling of different structures with fluorescent probes that present identical photoluminescence spectra and distinct fluorescence lifetimes. This technique allows extracting quantitative information from multichannel in vivo fluorescence imaging. In vivo lifetime multiplexed imaging requires fluorophores with excitation and emission bands in the near-infrared (NIR) and tunable fluorescence lifetimes, plus an imaging system capable of time-resolved image acquisition and analysis.
View Article and Find Full Text PDFThe unique combination of physical and optical properties of silica (core)/gold (shell) nanoparticles (gold nanoshells) makes them especially suitable for biomedicine. Gold nanoshells are used from high-resolution in vivo imaging to in vivo photothermal tumor treatment. Furthermore, their large scattering cross-section in the second biological window (1000-1700 nm) makes them also especially adequate for molecular optical coherence tomography (OCT).
View Article and Find Full Text PDFBackground And Objectives: The "Patient Blood Management" (PBM) programmes have demonstrated their value in the continuous improvement of care practice, due to continuous systematic reviewing of results and their dynamic and multidisciplinary updating in accordance with new clinical evidence. Our goal is to demonstrate the effectiveness of simple protocols, applicable in second level hospitals.
Patients And Methods: 702 patients undergoing scheduled arthroplasty from 2011 to 2018 were retrospectively analysed.
Research on near-infrared (NIR) bioimaging has progressed very quickly in the past few years, as fluorescence imaging is reaching a credible implementation as a preclinical technique. The applications of NIR bioimaging in theranostics have contributed to its increasing impact. This has brought about the development of novel technologies and, simultaneously, of new contrast agents capable of acting as efficient NIR optical probes.
View Article and Find Full Text PDFThe current status of the use of core-shell rare-earth-doped nanoparticles in biomedical applications is reviewed in detail. The different core-shell rare-earth-doped nanoparticles developed so far are described and the most relevant examples of their application in imaging, sensing, and therapy are summarized. In addition, the advantages and disadvantages they present are discussed.
View Article and Find Full Text PDFAdvanced diagnostic procedures are required to satisfy the continuously increasing demands of modern biomedicine while also addressing the need for cost reduction in public health systems. The development of infrared luminescence-based techniques for in vivo imaging as reliable alternatives to traditional imaging enables applications with simpler and more cost-effective apparatus. To further improve the information provided by in vivo luminescence images, the design and fabrication of enhanced infrared-luminescent contrast agents is required.
View Article and Find Full Text PDFThe self-assembly of higher-order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self-assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors.
View Article and Find Full Text PDFBackground: The association between body mass index (BMI) and depression is complex and controversial. The present study examined the relationship between BMI and new-onset depression during 7 years of follow-up in 20,212 adult women attending Primary Health Care Centres in Navarra, Spain.
Methods: The Atención Primaria de Navarra (APNA) study is a dynamic prospective cohort study.
The continuous development of nanotechnology has resulted in the actual possibility of the design and synthesis of nanostructured materials with pre-tailored functionabilities. Nanostructures capable of simultaneous heating and local thermal sensing are in strong demand as they would constitute a revolutionary solution to several challenging problems in bio-medicine, including the achievement of real time control during photothermal therapies. Several approaches have been demonstrated to achieve simultaneous heating and thermal sensing at the nanoscale.
View Article and Find Full Text PDFBreakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities.
View Article and Find Full Text PDFBackground: Overweight and obesity are major causes of comorbidities which can lead to further morbidity and mortality. The main objective of the present study was to estimate the comorbidity associated with obesity in 40,010 patients attending Primary Health Care Centres in Navarra.
Methods: It is a descriptive cross-sectional study.
3D remote control of multifunctional fluorescent up-converting nanoparticles (UCNPs) using optical forces is being required for a great variety of applications including single-particle spectroscopy, single-particle intracellular sensing, controlled and selective light-activated drug delivery and light control at the nanoscale. Most of these potential applications find a serious limitation in the reduced value of optical forces (tens of fN) acting on these nanoparticles, due to their reduced dimensions (typically around 10 nm). In this work, this limitation is faced and it is demonstrated that the magnitude of optical forces acting on UCNPs can be enhanced by more than one order of magnitude by a controlled modification of the particle/medium interface.
View Article and Find Full Text PDFWe report on the improvement of the infrared optical trapping efficiency of dielectric microspheres by the controlled adhesion of gold nanorods to their surface. When trapping wavelength was equal to the surface plasmon resonance wavelength of the gold nanorods (808 nm), a 7 times improvement in the optical force acting on the microspheres was obtained. Such a gold nanorod assisted enhancement of the optical trapping efficiency enabled the intracellular manipulation of the decorated dielectric microsphere by using a low power (22 mW) infrared optical trap.
View Article and Find Full Text PDFThe current status of the use of nanoparticles for photothermal treatments is reviewed in detail. The different families of heating nanoparticles are described paying special attention to the physical mechanisms at the root of the light-to-heat conversion processes. The heating efficiencies and spectral working ranges are listed and compared.
View Article and Find Full Text PDFLectin-carbohydrate interactions are the basis of many biological processes and essentially they constitute the language through which intercellular communications are codified. Thus they represent powerful tools in the examination and interpretation of changes that occur on cell surfaces during both physiological and, more importantly, pathological events. The development of optical techniques that exploit the unique properties of luminescent lanthanoid metal complexes in the investigation of lectin-carbohydrate recognition can foster research in the field of ratiometric biosensing and disease detection.
View Article and Find Full Text PDFAcquiring the temperature of a single living cell is not a trivial task. In this paper, we devise a novel nanothermometer, capable of accurately determining the temperature of solutions as well as biological systems such as HeLa cancer cells. The nanothermometer is based on the temperature-sensitive fluorescence of NaYF(4):Er(3+),Yb(3+) nanoparticles, where the intensity ratio of the green fluorescence bands of the Er(3+) dopant ions ((2)H(11/2) --> (4)I(15/2) and (4)S(3/2) --> (4)I(15/2)) changes with temperature.
View Article and Find Full Text PDF