Publications by authors named "Martin-Moreno L"

We introduce a machine-learning approach (denoted symmetry seeker neural network) capable of automatically discovering discrete symmetry groups in physical systems. This method identifies the finite set of parameter transformations that preserve the system's physical properties. Remarkably, the method accomplishes this without prior knowledge of the system's symmetry or the mathematical relationships between parameters and properties.

View Article and Find Full Text PDF
Article Synopsis
  • Phonon polaritons are quasiparticles formed by the interaction of infrared light and lattice vibrations in polar materials, which can enhance infrared absorption through SEIRA spectroscopy.
  • * Researchers have developed a compact on-chip SEIRA spectroscopy platform using an h-BN/graphene/h-BN structure on a metal split-gate, effective at detecting molecular vibrational fingerprints with high sensitivity.
  • * The findings suggest that integrating infrared light sources could advance these sensors, enhancing molecular and gas sensing capabilities significantly.
View Article and Find Full Text PDF

Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation - an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary.

View Article and Find Full Text PDF

Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.

View Article and Find Full Text PDF

With the advance of on-chip nanophotonics, there is a high demand for high-refractive-index and low-loss materials. Currently, this technology is dominated by silicon, but van der Waals (vdW) materials with a high refractive index can offer a very advanced alternative. Still, up to now, it was not clear if the optical anisotropy perpendicular to the layers might be a hindering factor for the development of vdW nanophotonics.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how optical antennas made from non-plasmonic tungsten (W) behave in terms of scattering properties and far-field diffraction patterns, comparing their findings with similar antennas made from plasmonic metals like silver (Ag) and gold (Au).
  • The study demonstrated that non-plasmonic W can also launch surface waves capable of confining visible light at metal-dielectric interfaces, similar to the behavior exhibited by plasmonic metals.
  • The researchers developed theoretical models to explain these newly discovered surface waves on tungsten, likening them to Zenneck waves observed in the radio frequency range, thus paving the way for further investigation into nanoscale surface waves beyond traditional plasmonic materials.
View Article and Find Full Text PDF

The ability to control the light polarization state is critically important for diverse applications in information processing, telecommunications, and spectroscopy. Here, we propose that a stack of anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers.

View Article and Find Full Text PDF

Transition edge sensors (TESs) are extremely sensitive thermometers made of superconducting materials operating at their transition temperature, where small variations in temperature give rise to a measurable increase in electrical resistance. Coupled to suitable absorbers, they are used as radiation detectors with very good energy resolution in several experiments. Particularly interesting are the applications that TESs may bring to single photon detection in the visible and infrared regimes.

View Article and Find Full Text PDF

Phonon polaritons (PhPs) in van der Waals (vdW) crystal slabs enable nanoscale infrared light manipulation. Specifically, periodically structured vdW slabs behave as polaritonic crystals (vdW-PCs), where the polaritons form Bloch modes. Because the polariton wavelengths are smaller than that of light, conventional far-field spectroscopy does not allow for a complete characterization of vdW-PCs or for revealing their band structure.

View Article and Find Full Text PDF

On-chip integration of plasmonics and electronics can benefit a broad range of applications in biosensing, signal processing, and optoelectronics. A key requirement is a chip-scale manufacturing method. Here, we demonstrate a split-trench resonator platform that combines a high-quality-factor resonant plasmonic biosensor with radio frequency (RF) nanogap tweezers.

View Article and Find Full Text PDF

We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states that appear at the AB-BA interfaces. The CEP form a hexagonal network with a unique energy scale ε_{p}=(e^{2})/(ε_{0}εt_{0}) with t_{0} the moiré lattice constant and ε the dielectric constant.

View Article and Find Full Text PDF

Integrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction.

View Article and Find Full Text PDF

By using a nonlocal, quantum mechanical response function we study graphene plasmons in a one-dimensional superlattice (SL) potential V_{0}cosG_{0}x. The SL introduces a quantum energy scale E_{G}∼ℏv_{F}G_{0} associated with electronic subband transitions. At energies lower than E_{G}, the plasmon dispersion is highly anisotropic; plasmons propagate perpendicularly to the SL axis, but become damped by electronic transitions along the SL direction.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in nanofabrication now allow the creation of extremely small nanophotonic devices with gap dimensions of only 1-2 nm, where traditional behaviors differ due to nonlocal electrodynamics.
  • Using a hybridizable discontinuous Galerkin method, researchers simulate a single nanoslit's response to light, addressing the complex interactions between electrons and incident radiation.
  • The study reveals how varying gap widths and film thicknesses influence plasmon resonances across terahertz and infrared frequencies, highlighting the effects of nonlocality on field enhancement and transmission properties.
View Article and Find Full Text PDF

We study the unconventional topological phases of polaritons inside a cavity waveguide, demonstrating how strong light-matter coupling leads to a breakdown of the bulk-edge correspondence. We observe an ostensibly topologically nontrivial phase, which unexpectedly does not exhibit edge states. Our findings are in direct contrast to topological tight-binding models with electrons, such as the celebrated Su-Schrieffer-Heeger (SSH) model.

View Article and Find Full Text PDF

Heisenberg's uncertainty principle implies that the quantum vacuum is not empty but fluctuates. These fluctuations can be converted into radiation through nonadiabatic changes in the Hamiltonian. Here, we discuss how to control this vacuum radiation, engineering a single-photon emitter out of a two-level system (2LS) ultrastrongly coupled to a finite-band waveguide in a vacuum state.

View Article and Find Full Text PDF

Launching and manipulation of polaritons in van der Waals materials offers novel opportunities for field-enhanced molecular spectroscopy and photodetection, among other applications. Particularly, the highly confined hyperbolic phonon polaritons (HPhPs) in h-BN slabs attract growing interest for their capability of guiding light at the nanoscale. An efficient coupling between free space photons and HPhPs is, however, hampered by their large momentum mismatch.

View Article and Find Full Text PDF

Photonic crystals (PCs) are periodically patterned dielectrics providing opportunities to shape and slow down the light for processing of optical signals, lasing and spontaneous emission control. Unit cells of conventional PCs are comparable to the wavelength of light and are not suitable for subwavelength scale applications. We engineer a nanoscale hole array in a van der Waals material (h-BN) supporting ultra-confined phonon polaritons (PhPs)-atomic lattice vibrations coupled to electromagnetic fields.

View Article and Find Full Text PDF

We analyze the properties of strongly coupled excitons and photons in systems made of semiconducting two-dimensional transition-metal dichalcogenides embedded in optical cavities. Through a detailed microscopic analysis of the coupling, we unveil novel, highly tunable features of the spectrum that result in polariton splitting and a breaking of light-matter selection rules. The dynamics of the composite polaritons is influenced by the Berry phase arising both from their constituents and from the confinement-enhanced coupling.

View Article and Find Full Text PDF

We present a wafer-scale array of resonant coaxial nanoapertures as a practical platform for surface-enhanced infrared absorption spectroscopy (SEIRA). Coaxial nanoapertures with sub-10 nm gaps are fabricated via photolithography, atomic layer deposition of a sacrificial AlO layer to define the nanogaps, and planarization via glancing-angle ion milling. At the zeroth-order Fabry-Pérot resonance condition, our coaxial apertures act as a "zero-mode resonator (ZMR)", efficiently funneling as much as 34% of incident infrared (IR) light along 10 nm annular gaps.

View Article and Find Full Text PDF

We present the first angle resolved measurements of extraordinary optical transmission (EOT) through hole array gratings in a gold film. Varying the lattice spacing of the arrays and looking at higher diffraction orders, we retrieve the angular emission pattern of the constituent holes with better signal to noise ratio than with single-hole experiments. We present a method to determine separately the angular dependence of the direct and resonant contribution to EOT by using the spectral features of the diffraction orders together with an established model.

View Article and Find Full Text PDF

The magnetic circular dichroism and the Faraday rotation are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials, the strength and the sign of these effects can be only controlled by the field value and its orientation. Furthermore, the terahertz range is lacking materials having the ability to affect the polarization state of the light in a non-reciprocal manner.

View Article and Find Full Text PDF

In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects.

View Article and Find Full Text PDF

Absorption-induced transparency (AIT) is one of the family of induced transparencies that has emerged in recent decades in the fields of plasmonics and metamaterials. It is a seemingly paradoxical phenomenon in which transmission through nanoholes in gold and silver is dramatically enhanced at wavelengths where a physisorbed dye layer absorbs strongly. The origin of AIT remains controversial, with both experimental and theoretical work pointing to either surface (plasmonic) or in-hole (waveguide) mechanisms.

View Article and Find Full Text PDF