In this work, different analytical techniques (thermal analysis, (13)C cross-polarization magic angle spinning (CPMAS) NMR and Fourier transform infrared (FT-IR) spectroscopy) have been used to study the organic matter changes during the co-composting of pig slurry with cotton gin waste. To ensure the validity of the findings, the composting process was developed in different scenarios: under experimental pilot plant conditions, using the static pile system, and under real conditions on a pig farm, using the turning pile system. Also, the thermal stability index (R1) was determined before and after an extraction with water, to evaluate the effect of eliminating water-soluble inorganic salts on the thermal analysis.
View Article and Find Full Text PDFThe objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials.
View Article and Find Full Text PDF