Publications by authors named "Martin von Mohrenschildt"

Self-motion perception relies primarily on the integration of the visual, vestibular, proprioceptive, and somatosensory systems. There is a gap in understanding how a temporal lag between visual and vestibular motion cues affects visual-vestibular weighting during self-motion perception. The beta band is an index of visual-vestibular weighting, in that robust beta event-related synchronization (ERS) is associated with visual weighting bias, and robust beta event-related desynchronization is associated with vestibular weighting bias.

View Article and Find Full Text PDF

We used a driving simulator to investigate landmark-based route navigation in young adults. Previous research has examined how proximal and distal landmarks influence route navigation, however, these effects have not been extensively tested in ecologically-relevant settings. We used a virtual town in which participants learned various routes while simultaneously driving.

View Article and Find Full Text PDF

It is well established that humans use self-motion and landmark cues to successfully navigate their environment. Existing research has demonstrated a critical role of the vestibular system in supporting navigation across many species. However, less is known about how vestibular cues interact with landmarks to promote successful navigation in humans.

View Article and Find Full Text PDF

Aging is associated with a gradual decline in the sensory systems and noisier sensory information. Some research has found that older adults compensate for this with enhanced multisensory integration. However, less is known about how aging influences visual-vestibular integration, an ability that underlies self-motion perception.

View Article and Find Full Text PDF

Self-motion perception is based on the integration of visual (optic flow) and vestibular (inertial) sensory information. Previous research has shown that the relative contribution of visual and vestibular cues can change in real time based on the reliability of that information. The present study assessed whether initial velocity and acceleration magnitude influence the relative contribution of these cues to the detection of self-acceleration.

View Article and Find Full Text PDF