Publications by authors named "Martin van der Mark"

This paper describes a realization of an electrophysiology (EP) catheter with 96 electrodes which requires no electrical wiring to the outside by relying on an optical link for both power supply and data communication. The catheter tip is constructed from a liquid crystal polymer (LCP) material. It features 96 gold electrodes, which are uniformly arranged along an expandable basket.

View Article and Find Full Text PDF

Purpose: Fiber Optic RealShape (FORS) is a new technology that visualizes the full three-dimensional shape of medical devices, such as catheters and guidewires, using an optical fiber embedded in the device. This three-dimensional shape provides guidance to clinicians during minimally invasive procedures, and enables intuitive navigation. The objective of this paper is to assess the accuracy of the FORS technology, as implemented in the current state-of-the-art Philips FORS system.

View Article and Find Full Text PDF

Smart minimally invasive devices face a connectivity challenge. An example is found in intracardiac echocardiography where the signal transmission and supply of power at the distal end require many thin and fragile wires in order to keep the catheter slim and flexible. We have built a fully functional bench-top prototype to demonstrate that electrical wires may be replaced by optical fibers.

View Article and Find Full Text PDF

Using scatterplots of 2 or 3 parameters, diffuse optical tomography and fluorescence imaging are combined to improve detectability of breast lesions. Small or low contrast phantom-lesions that were missed in the optical and fluorescence images were detected in the scatterplots. In patient measurements, all tumors were visible and easily differentiated from artifacts and areolas in the scatterplots.

View Article and Find Full Text PDF

We demonstrate a method to estimate the concentrations of water and lipid in scattering media such as biological tissues with diffuse optical spectra acquired over the range of 900 to 1600 nm. Estimations were performed by fitting the spectra to a model of light propagation in scattering media derived from diffusion theory. To validate the method, spectra were acquired from tissue phantoms consisting of lipid and water emulsions and swine tissues ex vivo with a two-fiber probe.

View Article and Find Full Text PDF

Purpose: This is the first clinical evaluation of a novel fluorescent imaging agent (Omocianine) for breast cancer detection with diffuse optical tomography (DOT).

Procedures: Eleven women suspected of breast cancer were imaged with DOT at multiple time points (up to 24 h) after receiving an intravenous injection of Omocianine (doses 0.01 to 0.

View Article and Find Full Text PDF

This paper presents an evaluation of a prototype diffuse optical tomography (DOT) system. Seventeen women with 18 breast lesions (10 invasive carcinomas, 2 fibroadenomas, and 6 benign cysts; diameters 13-54 mm) were evaluated with DOT and magnetic resonance imaging (MRI). A substantial fraction of the original 36 recruited patients could not be examined using this prototype due to technical problems.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to validate a newly developed diffuse optical tomography (DOT) system on benign cysts in the breast.

Procedures: Eight patients with 20 benign cysts were included. Study procedures consisted of optical breast imaging and breast magnetic resonance imaging (MRI) for comparison.

View Article and Find Full Text PDF