Underwater images are used to explore and monitor ocean habitats, generating huge datasets with unusual data characteristics that preclude traditional data management strategies. Due to the lack of universally adopted data standards, image data collected from the marine environment are increasing in heterogeneity, preventing objective comparison. The extraction of actionable information thus remains challenging, particularly for researchers not directly involved with the image data collection.
View Article and Find Full Text PDFFront Artif Intell
July 2020
Deep artificial neural networks have become the go-to method for many machine learning tasks. In the field of computer vision, deep convolutional neural networks achieve state-of-the-art performance for tasks such as classification, object detection, or instance segmentation. As deep neural networks become more and more complex, their inner workings become more and more opaque, rendering them a "black box" whose decision making process is no longer comprehensible.
View Article and Find Full Text PDFMass Spectrometry Imaging (MSI) is an established and still evolving technique for the spatial analysis of molecular co-location in biological samples. Nowadays, MSI is expanding into new domains such as clinical pathology. In order to increase the value of MSI data, software for visual analysis is required that is intuitive and technique independent.
View Article and Find Full Text PDFDeep convolutional neural networks are emerging as the state of the art method for supervised classification of images also in the context of taxonomic identification. Different morphologies and imaging technologies applied across organismal groups lead to highly specific image domains, which need customization of deep learning solutions. Here we provide an example using deep convolutional neural networks (CNNs) for taxonomic identification of the morphologically diverse microalgal group of diatoms.
View Article and Find Full Text PDFDigital imaging has become one of the most important techniques in environmental monitoring and exploration. In the case of the marine environment, mobile platforms such as autonomous underwater vehicles (AUVs) are now equipped with high-resolution cameras to capture huge collections of images from the seabed. However, the timely evaluation of all these images presents a bottleneck problem as tens of thousands or more images can be collected during a single dive.
View Article and Find Full Text PDF