Human-induced environmental change and globalization facilitate biological invasions, which can lead to the displacement of native species by non-native ones. Analogously, biodiversity loss may occur within species when habitat modifications facilitate the expansion of a specific population's range, leading to genetic admixture with native local populations. We demonstrate such intraspecific loss in population-level diversity in the Southern Small White (Pieris mannii), an originally sedentary butterfly that recently expanded its range across Central Europe due to urbanization.
View Article and Find Full Text PDFThe population structure and behaviour of univoltine butterfly species have been studied intensively. However, much less is known about bivoltine species. In particular, in-depth studies of the differences in population structure, behaviour, and ecology between these two generations are largely lacking.
View Article and Find Full Text PDFBackground: (Fabricius, 1775) is a large mantid species found from the Canary Islands across North Africa, the Middle East, and Pakistan. Research on this species has been limited, especially in Iran, despite the country's potential significance for studying its biology and distribution. Adults of this species are easily recognizable by their marble-white pattern and rhomboidal leaf-like pronotum.
View Article and Find Full Text PDFThe biology and distribution patterns of the Sahelian mantid species are still insufficiently known. For the first time, records are confirmed of this species from Iran and the distribution map of its native range is updated. Records are compiled from the Sahel zone of North Africa, the Arabian Peninsula, and Iran.
View Article and Find Full Text PDFThe bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous.
View Article and Find Full Text PDFTrait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes.
View Article and Find Full Text PDFWith the aim of supporting ecological analyses in butterflies, the third most species-rich superfamily of Lepidoptera, this paper presents the first time-calibrated phylogeny of all 496 extant butterfly species in Europe, including 18 very localised endemics for which no public DNA sequences had been available previously. It is based on a concatenated alignment of the mitochondrial gene COI and up to eleven nuclear gene fragments, using Bayesian inferences of phylogeny. To avoid analytical biases that could result from our region-focussed sampling, our European tree was grafted upon a global genus-level backbone butterfly phylogeny for analyses.
View Article and Find Full Text PDFUnderstanding the dynamics of biodiversity, including the spatial distribution of genetic diversity, is critical for predicting responses to environmental changes, as well as for effective conservation measures. This task requires tracking changes in biodiversity at large spatial scales and correlating with species functional traits. We provide three comprehensive resources to understand the determinants for mitochondrial DNA differentiation represented by (a) 15,609 COI sequences and (b) 14 traits belonging to 307 butterfly species occurring in Western-Central Europe and (c) the first multi-locus phylogenetic tree of all European butterfly species.
View Article and Find Full Text PDFHow species respond to environmental change is a fundamental question in ecology and species traits can help to tackle this question. In this study, we analyze how the functional structure of species assemblages changes with selected environmental variables along an elevational gradient. In particular, we used species traits of local butterfly communities (body size, voltinism, overwintering stages, and host specificity) in a national nature reserve in China to assess the impacts of temperature, net primary productivity, and land use.
View Article and Find Full Text PDFThis paper presents an updated checklist of the butterflies of Europe, together with their original name combinations, and their occurrence status in each European country. According to this checklist, 496 species of the superfamily Papilionoidea occur in Europe. Changes in comparison with the last version (2.
View Article and Find Full Text PDFDichotomous keys are the most popular type of identification keys. Studies have been conducted to evaluate dichotomous keys in many aspects. In this paper we propose an index for quantitative evaluation of dichotomous keys (E).
View Article and Find Full Text PDFClimate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance.
View Article and Find Full Text PDFImpacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change.
View Article and Find Full Text PDFThe Palaearctic Grayling genus Pseudochazara encompasses a number of petrophilous butterfly species, most of which are local endemics especially in their centre of radiation in SW Asia and the Balkans. Due to a lack of consistent morphological characters, coupled with habitat induced variability, their taxonomy is poorly understood and species delimitation is hampered. We employed a DNA barcoding approach to address the question of separate species status for several European taxa and provide first insight into the phylogeny of the genus.
View Article and Find Full Text PDFDetailed information on species' ecological niche characteristics that can be related to declines and extinctions is indispensable for a better understanding of the relationship between the occurrence and performance of wild species and their environment and, moreover, for an improved assessment of the impacts of global change. Knowledge on species characteristics such as habitat requirements is already available in the ecological literature for butterflies, but information about their climatic requirements is still lacking. Here we present a unique dataset on the climatic niche characteristics of 397 European butterflies representing 91% of the European species (see Appendix).
View Article and Find Full Text PDFDeep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like Wolbachia that manipulate host reproduction. Phengaris butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two Phengaris species based on divergent mtDNA sequences.
View Article and Find Full Text PDFBackground: Current molecular phylogenetic studies of Lepidoptera and most other arthropods are predominantly based on mitochondrial genes and a limited number of nuclear genes. The nuclear genes, however, generally do not provide sufficient information for young radiations. ITS2 , which has proven to be an excellent nuclear marker for similarly aged radiations in other organisms like fungi and plants, is only rarely used for phylogeny estimation in arthropods, although universal primers exist.
View Article and Find Full Text PDFBackground: DNA barcoding, i.e. the use of a 648 bp section of the mitochondrial gene cytochrome c oxidase I, has recently been promoted as useful for the rapid identification and discovery of species.
View Article and Find Full Text PDF