Off-label hypomethylating agents and venetoclax (HMA/VEN) are often used for relapsed and refractory (R/R) AML patients. However, predictors of outcome are elusive. The objective of the current retrospective observational multicenter study of 240 adult patients (median age 68.
View Article and Find Full Text PDFPatients with acute myeloid leukemia (AML) who experience relapse following allogeneic hematopoietic cell transplantation (alloHCT) face unfavorable outcomes regardless of the chosen relapse treatment. Early detection of relapse at the molecular level by measurable residual disease (MRD) assessment enables timely intervention, which may prevent hematological recurrence of the disease. It remains unclear whether molecular MRD assessment can detect MRD before impending relapse and, if so, how long in advance.
View Article and Find Full Text PDFDonor lymphocyte infusions (DLIs) can directly target leukemic cells through a graft-versus-leukemia effect and play a key role in the prevention and management of relapse after allogeneic hematopoietic cell transplantation (alloHCT). Predictors of response to DLIs are not well established. We evaluated measurable residual disease (MRD) before, 30 and 90 days after DLI treatment as biomarkers of response.
View Article and Find Full Text PDFRelapse in patients with acute myeloid leukemia (AML) is common and is associated with a dismal prognosis. Treatment options are limited and the understanding of molecular response patterns is still challenging. We analyzed the clonal response patterns of 15 patients with relapsed/refractory AML treated with selinexor in a phase II trial (SAIL).
View Article and Find Full Text PDFNext-generation sequencing (NGS)-based measurable residual disease (MRD) monitoring in patients with acute myeloid leukemia (AML) is widely applicable and prognostic prior to allogeneic hematopoietic cell transplantation (alloHCT). We evaluated the prognostic role of clonal hematopoiesis-associated DNMT3A, TET2, and ASXL1 (DTA) and non-DTA mutations for MRD monitoring post-alloHCT to refine MRD marker selection. Of 154 patients with AML, 138 (90%) had at least one mutation at diagnosis, which were retrospectively monitored by amplicon-based error-corrected NGS on day 90 and/or day 180 post-alloHCT.
View Article and Find Full Text PDFMolecular measurable residual disease (MRD) assessment is not established in approximately 60% of acute myeloid leukemia (AML) patients because of the lack of suitable markers for quantitative real-time polymerase chain reaction. To overcome this limitation, we established an error-corrected next-generation sequencing (NGS) MRD approach that can be applied to any somatic gene mutation. The clinical significance of this approach was evaluated in 116 AML patients undergoing allogeneic hematopoietic cell transplantation (alloHCT) in complete morphologic remission (CR).
View Article and Find Full Text PDFWe integrated molecular data with available prognostic factors in patients undergoing allogeneic hematopoietic cell transplantation (alloHCT) for myelodysplastic syndrome (MDS) or secondary acute myeloid leukemia (sAML) from MDS to evaluate their impact on prognosis. Three hundred four patients were sequenced for mutations in 54 genes. We used a Cox multivariate model and competing risk analysis with internal and cross validation to identify factors prognostic of overall survival (OS), cumulative incidence of relapse (CIR), and non-relapse mortality (NRM).
View Article and Find Full Text PDFMutations in the cohesin complex are novel, genetic lesions in acute myeloid leukemia (AML) that are not well characterized. In this study, we analyzed the frequency, clinical, and prognostic implications of mutations in STAG1, STAG2, SMC1A, SMC3, and RAD21, all members of the cohesin complex, in a cohort of 389 uniformly treated AML patients by next generation sequencing. We identified a total of 23 patients (5.
View Article and Find Full Text PDFMutations in the metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are frequently found in glioma, acute myeloid leukemia (AML), melanoma, thyroid cancer, and chondrosarcoma patients. Mutant IDH produces 2-hydroxyglutarate (2HG), which induces histone- and DNA-hypermethylation through inhibition of epigenetic regulators. We investigated the role of mutant IDH1 using the mouse transplantation assay.
View Article and Find Full Text PDFOverexpression of MN1, ERG, BAALC, and EVI1 (MEBE) genes in cytogenetically normal acute myeloid leukemia (AML) patients is associated with poor prognosis, but their prognostic effect in patients with myelodysplastic syndromes (MDS) has not been studied systematically. Expression data of the four genes from 140 MDS patients were combined in an additive score, which was validated in an independent patient cohort of 110 MDS patients. A high MEBE score, defined as high expression of at least two of the four genes, predicted a significantly shorter overall survival (OS) (HR 2.
View Article and Find Full Text PDFMutations in genes of the splicing machinery have been described recently in myelodysplastic syndromes (MDS). In the present study, we examined a cohort of 193 MDS patients for mutations in SRSF2, U2AF1 (synonym U2AF35), ZRSR2, and, as described previously, SF3B1, in the context of other molecular markers, including mutations in ASXL1, RUNX1, NRAS, TP53, IDH1, IDH2, NPM1, and DNMT3A. Mutations in SRSF2, U2AF1, ZRSR2, and SF3B1 were found in 24 (12.
View Article and Find Full Text PDFPurpose: To study the incidence and prognostic impact of mutations in Additional sex comb-like 1 (ASXL1) in a large cohort of patients with myelodysplastic syndrome (MDS).
Patients, Materials, And Methods: Overall, 193 patients with MDS and 65 healthy volunteers were examined for ASXL1 mutations by direct sequencing and for expression levels of ASXL1. The prognostic impact of ASXL1 mutation and expression levels was evaluated in the context of other clinical and molecular prognostic markers.
Background: Myelodysplastic syndromes are a heterogeneous group of hematopoietic stem cell disorders with a high propensity to transform into acute myeloid leukemia. Heterozygous missense mutations in IDH1 at position R132 and in IDH2 at positions R140 and R172 have recently been reported in acute myeloid leukemia. However, little is known about the incidence and prognostic impact of IDH1 and IDH2 mutations in myelodysplastic syndromes.
View Article and Find Full Text PDF