We present techniques for performing two-qubit gates on Gottesman-Kitaev-Preskill (GKP) codes with finite energy, and find that operations designed for ideal infinite-energy codes create undesired entanglement when applied to physically realistic states. We demonstrate that this can be mitigated using recently developed local error-correction protocols, and evaluate the resulting performance. We also propose energy-conserving finite-energy gate implementations which largely avoid the need for further correction.
View Article and Find Full Text PDFIn the extensive search for new physics, the precise measurement of the Higgs boson continues to play an important role. To this end, machine learning techniques have been recently applied to processes like the Higgs production via vector-boson fusion. In this paper, we propose to use algorithms for learning to rank, i.
View Article and Find Full Text PDFFrequency multiplication is a process in modern electronics in which harmonics of the input frequency are generated in nonlinear electronic circuits. Devices based on the propagation and interaction of spin waves are a promising alternative to conventional electronics. The characteristic frequency of these excitations is in the gigahertz (GHz) range and devices are not readily interfaced with conventional electronics.
View Article and Find Full Text PDF