Publications by authors named "Martin W. Brechbiel"

Despite advances in therapy of Hodgkin's lymphoma (HL), a proportion of patients will not respond or relapse. The authors had previously identified CD25, IL-2Rα, as a target for systemic radioimmunotherapy of HL since most normal cells do not express CD25, but it is expressed by a minority of Hodgkin/Reed-Sternberg (HRS) cells and most Tregs rosetting around HRS cells. This was a single institution, nonrandomized, open-label phase I/II trial of radiolabeled Y-daclizumab, an anti-CD25 monoclonal antibody, BEAM (carmustine, etoposide, cytarabine, and melphalan) conditioning treatment followed by autologous hematopoietic stem cell transplant (ASCT).

View Article and Find Full Text PDF

Refinement of treatment regimens enlisting targeted α-radiation therapy (TAT) is an ongoing effort. Among the variables to consider are the target molecule, radionuclide, dosage, and administration route. The panitumumab F(ab') fragment targeting epidermal growth factor receptor tolerated modification with the TCMC chelate as well as radiolabeling with Pb or Pb.

View Article and Find Full Text PDF

Identification of the appropriate combination of radionuclide, target and targeting vehicle is critical for successful radioimmunotherapy. For the treatment of disseminated peritoneal diseases such as pancreatic or ovarian cancer, α-emitting radionuclides have been proposed for targeted radiation therapy. This laboratory has taken a systematic approach investigating targeted α-radiation therapy, allowing comparisons to now be made between At, Th, Bi and Pb.

View Article and Find Full Text PDF

Identifying molecular targets and an appropriate targeting vehicle, i.e., monoclonal antibodies (mAb) and their various forms, for radioimmunotherapy (RIT) remains an active area of research.

View Article and Find Full Text PDF

Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production.

View Article and Find Full Text PDF

In pre-clinical studies, combination therapy with gemcitabine and targeted radioimmunotherapy (RIT) using 212Pb-trastuzumab showed tremendous therapeutic potential in the LS-174T tumor xenograft model of disseminated intraperitoneal disease. To better understand the underlying molecular basis for the observed cell killing efficacy, gene expression profiling was performed after a 24 h exposure to 212Pb-trastuzumab upon gemcitabine (Gem) pre-treatment in this model. DNA damage response genes in tumors were quantified using a real time quantitative PCR array (qRT-PCR array) covering 84 genes.

View Article and Find Full Text PDF
Article Synopsis
  • Aryliodonium salts are effective precursors for creating (18) F-labeled nuclear imaging tracers, but their reactivity with heavy halides like radioiodide and astatide is not well understood.
  • A study discovered that astatide is more reactive than iodide in radiohalogenation, which contradicts previous halogen reactivity trends.
  • Kinetic analysis and quantum calculations showed different activation energies for iodide and astatide reactions, with astatination occurring via a monomeric iodonium complex, suggesting aryliodonium salts could be better alternatives to stannane chemistry for heavy radiohalogen labeling in nuclear medicine.
View Article and Find Full Text PDF

Unlabelled: Alpha-particle emitters have a high linear energy transfer and short range, offering the potential for treating micrometastases while sparing normal tissues. We developed a urea-based, At-labeled small molecule targeting prostate-specific membrane antigen (PSMA) for the treatment of micrometastases due to prostate cancer (PC).

Methods: PSMA-targeted (2S)-2-(3-(1-carboxy-5-(4-At-astatobenzamido)pentyl)ureido)-pentanedioic acid (At- 6: ) was synthesized.

View Article and Find Full Text PDF

Radiolabeled antibodies (mAbs) provide efficient tools for cancer therapy. The combination of low energy β(-)-emissions (500 keVmax; 130 keVave) along with a γ-emission for imaging makes (177)Lu (T1/2 = 6.7 day) a suitable radionuclide for radioimmunotherapy (RIT) of tumor burdens possibly too large to treat with α-particle radiation.

View Article and Find Full Text PDF

IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs.

View Article and Find Full Text PDF

Background: The aim of the study was to explore Fc mutations of a humanised anti-Lewis-Y antibody (IgG1) hu3S193 as a strategy to improve therapeutic ratios for therapeutic payload delivery.

Methods: Four hu3S193 variants (I253A, H310A, H435A and I253A/H310A) were generated via site-directed mutagenesis and radiolabelled with diagnostic isotopes iodine-125 or indium-111. Biodistribution studies in Lewis-Y-positive tumour-bearing mice were used to calculate the dose in tumours and organs for therapeutic isotopes (iodine-131, yttrium-90 and lutetium-177).

View Article and Find Full Text PDF

Despite significant advances in the treatment of Hodgkin's lymphoma (HL), a significant proportion of patients will not respond or will subsequently relapse. We identified CD25, the IL-2 receptor alpha subunit, as a favorable target for systemic radioimmunotherapy of HL. The scientific basis for the clinical trial was that, although most normal cells with exception of Treg cells do not express CD25, it is expressed by a minority of Reed-Sternberg cells and by most polyclonal T cells rosetting around Reed-Sternberg cells.

View Article and Find Full Text PDF

The first-in-human phase 1 clinical radioimmunotherapy (RIT) trial with 212Pb-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane-trastuzumab (212Pb-TCMC-trastuzumab) was completed in October 2014 as a joint effort at the University of Alabama (UAB) and the University of California San Diego Moores Cancer Center. The preliminary reports indicate that after five dose-levels of intraperitoneally administered 212Pb-TCMC-trastuzumab, patients with carcinomatosis experienced minimal agent-related toxicity. This report presents the data accumulated to date on the stability of the clinical grade, produced according to current good manufacturing practices (cGMP), TCMC-trastuzumab conducted in support of that clinical trial.

View Article and Find Full Text PDF

Faced with the novelty of a 212Pb-labeled monoclonal antibody (mAb) for clinical translation, concerns were expressed by the Food and Drug Administration (FDA) regarding 212Pb prematurely released from the mAb-chelate conjugate. The objective of this study was to simulate the worst case scenario of such a failure. Groups of Balb/c mice (n = 9-20) were administered 212Pb by intraperitoneal (0.

View Article and Find Full Text PDF