Aims: P-wave morphology correlates with the risk for atrial fibrillation (AF). Left atrial (LA) enlargement could explain both the higher risk for AF and higher P-wave terminal force (PTF) in lead V. However, PTF-V has been shown to correlate poorly with LA size.
View Article and Find Full Text PDFECG imaging is an emerging technology for the reconstruction of cardiac electric activity from non-invasively measured body surface potential maps. In this case report, we present the first evaluation of transmurally imaged activation times against endocardially reconstructed isochrones for a case of sustained monomorphic ventricular tachycardia (VT). Computer models of the thorax and whole heart were produced from MR images.
View Article and Find Full Text PDFLeft atrial fibrosis is thought to contribute to the manifestation of atrial fibrillation (AF). Late Gadolinium enhancement (LGE) MRI has the potential to image regions of low perfusion, which can be related to fibrosis. We show that a simulation with a patient-specific model including left atrial regional fibrosis derived from LGE-MRI reproduces local activation in the left atrium more precisely than the regular simulation without fibrosis.
View Article and Find Full Text PDFAtrial fibrillation (AF) is the most common cardiac arrhythmia, and the total number of AF patients is constantly increasing. The mechanisms leading to and sustaining AF are not completely understood yet. Heterogeneities in atrial electrophysiology seem to play an important role in this context.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
Anatomically realistic computational models provide a powerful platform for investigating mechanisms that underlie atrial rhythm disturbances. In recent years, novel techniques have been developed to construct structurally-detailed, image-based models of 3D atrial anatomy. However, computational models still do not contain full descriptions of the atrial intramural myofiber architecture throughout the entire atria.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2013
Model-based segmentation approaches have been proven to produce very accurate segmentation results while simultaneously providing an anatomic labeling for the segmented structures. However, variations of the anatomy, as they are often encountered e.g.
View Article and Find Full Text PDFComputational atrial models aid the understanding of pathological mechanisms and therapeutic measures in basic research. The use of biophysical models in a clinical environment requires methods to personalize the anatomy and electrophysiology (EP). Strategies for the automation of model generation and for evaluation are needed.
View Article and Find Full Text PDFMed Biol Eng Comput
August 2012
This review article gives a comprehensive survey of the progress made in computational modeling of the human atria during the last 10 years. Modeling the anatomy has emerged from simple "peanut"-like structures to very detailed models including atrial wall and fiber direction. Electrophysiological models started with just two cellular models in 1998.
View Article and Find Full Text PDFThe loss of cardiac pump function accounts for a significant increase in both mortality and morbidity in Western society, where there is currently a one in four lifetime risk, and costs associated with acute and long-term hospital treatments are accelerating. The significance of cardiac disease has motivated the application of state-of-the-art clinical imaging techniques and functional signal analysis to aid diagnosis and clinical planning. Measurements of cardiac function currently provide high-resolution datasets for characterizing cardiac patients.
View Article and Find Full Text PDFMultiscale cardiac modeling has made great advances over the last decade. Highly detailed atrial models were created and used for the investigation of initiation and perpetuation of atrial fibrillation. The next challenge is the use of personalized atrial models in clinical practice.
View Article and Find Full Text PDFAtrial arrhythmias are frequently treated using catheter ablation during electrophysiological (EP) studies. However, success rates are only moderate and could be improved with the help of personalized simulation models of the atria. In this work, we present a workflow to generate and validate personalized EP simulation models based on routine clinical computed tomography (CT) scans and intracardiac electrograms.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2012
A framework for step-by-step personalization of a computational model of human atria is presented. Beginning with anatomical modeling based on CT or MRI data, next fiber structure is superimposed using a rule-based method. If available, late-enhancement-MRI images can be considered in order to mark fibrotic tissue.
View Article and Find Full Text PDFConduction velocity (CV) and CV restitution are important substrate parameters for understanding atrial arrhythmias. The aim of this work is to (i) present a simple but feasible method to measure CV restitution in-vivo using standard circular catheters, and (ii) validate its feasibility with data measured during incremental pacing. From five patients undergoing catheter ablation, we analyzed eight datasets from sinus rhythm and incremental pacing sequences.
View Article and Find Full Text PDFBackground: The prevalence of atrial fibrillation is increased in patients with end-stage renal disease. Previous studies suggested that extracellular electrolyte alterations caused by hemodialysis (HD) therapy could be proarrhythmic.
Methods: Multiscale models were used for a consequent analysis of the effects of extracellular ion concentration changes on atrial electrophysiology.
Deep hypothermic circulatory arrest is necessary for some types of cardiac and aortic surgery. Perfusion of the brain can be maintained using a heart-lung machine and unilateral antegrade cerebral perfusion. Cooling rates during extracorporeal circulation depend on local perfusion.
View Article and Find Full Text PDF