Publications by authors named "Martin W Jetzer"

The accumulation of electrostatic charge on drug particles and excipient powders arising from interparticulate collisions or contacts with other surfaces can lead to agglomeration and adhesion problems during the manufacturing process, filling, and delivery of dry powder inhaler (DPI) formulations. The objective of the study was to investigate the role of triboelectrification to better understand the influence of electrostatic charge on the performance of DPIs with 2 capsule-based dimensionally similar devices constructed with different materials. In addition, strategies to reduce electrostatic charge build up during the manufacturing process, and the processes involved in this phenomenon were investigated.

View Article and Find Full Text PDF

The potential of the force control agent magnesium stearate (MgSt) to enhance the aerosol performance of lactose-based dry powder inhaled (DPI) formulations was investigated in this study. The excipient-blends were investigated with analytical techniques including time-of-flight secondary ion mass spectrometry and single particle aerosol mass spectrometry (SPAMS), and particle size, morphology, and surface properties were evaluated. Excipient-blends were manufactured either by high-shear or low-shear blending lactose carrier with different amounts of MgSt in the range from 0% to 10% (w/w).

View Article and Find Full Text PDF

Particle co-associations between the active pharmaceutical ingredients fluticasone propionate and salmeterol xinafoate were examined in dry powder inhaled (DPI) and metered dose inhaled (MDI) combination products. Single Particle Aerosol Mass Spectrometry was used to investigate the particle interactions in Advair Diskus (500/50 mcg) and Seretide (125/25 mcg). A simple rules tree was used to identify each compound, either alone or co-associated at the level of the individual particle, using unique marker peaks in the mass spectra for the identification of each drug.

View Article and Find Full Text PDF