Publications by authors named "Martin Vordermeier"

Bovine tuberculosis (bTB), caused by infection, is a zoonotic disease in cattle that represents a significant ongoing challenge to cattle farming productivity and the livelihoods of livestock farmers in the UK. Vaccination of cattle with BCG could directly target the ability of to proliferate within vaccinates, restricting bTB pathogenesis and onward disease transmission, and represent a step change in the tools available to help control bTB in farmed cattle. A Marketing Authorisation (MA) is required before a cattle BCG vaccine could be sold and supplied as a veterinary medicine within the UK and this requires comprehensive data supporting vaccine quality, efficacy and, most importantly, its safety.

View Article and Find Full Text PDF

Bacillus Calmette-Guérin (BCG) is a routinely used vaccine for protecting children against that comprises attenuated . BCG can also be used to protect livestock against ; however, its effectiveness has not been quantified for this use. We performed a natural transmission experiment to directly estimate the rate of transmission to and from vaccinated and unvaccinated calves over a 1-year exposure period.

View Article and Find Full Text PDF

The Problem: Ante-mortem diagnosis of Johne's disease, caused by subsp. (MAP), is normally achieved through faecal culture, PCR, or serological tests, but agreement as to which samples are positive for Johne's disease is often poor and sensitivities are low, particularly in early-stage infections. The potential solution: Mycobacterial cells contain very complex characteristic mixtures of mycolic acid derivatives that elicit antibodies during infection; this has been used to detect infections in humans.

View Article and Find Full Text PDF

Background: Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions.

View Article and Find Full Text PDF
Article Synopsis
  • Bovine tuberculosis, caused by Mycobacterium bovis, is a significant infectious disease affecting cattle globally, with varying responses to infection that are not fully understood.
  • A study using advanced assays revealed that cell-mediated immune responses (CMI) appeared as early as two weeks after infection, while antibody responses were also detectable in some cattle within four weeks.
  • The findings suggest a need for better biomarkers to predict infection outcomes, especially in low-and-middle income countries where traditional control methods, like test-and-slaughter, are impractical.
View Article and Find Full Text PDF

Bacillus Calmette-Guérin (BCG) Danish strain 1331 (CattleBCG) is currently the lead vaccine candidate for the control of bovine tuberculosis (TB) in cattle in GB, where prior vaccination has shown to result in a significant reduction in bovine TB pathology induced by infection with Mycobacterium bovis (M. bovis). A critical knowledge gap in our understanding of CattleBCG is the duration of immunity post vaccination at the minimum intended vaccine dose.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia.

View Article and Find Full Text PDF

The single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a global disease of livestock that has damaging economic, animal health and public health consequences. Conventional bTB disease control strategies, based around the testing and slaughter of cattle infected with bTB, are typically used to help limit or reduce the transmission of this disease but in many low- and middle-income countries such strategies may often be economically unviable, culturally unacceptable or logistically impracticable. The use of vaccination to protect cattle against bTB could provide a potentially more affordable, ethically acceptable and practical additional disease control measure.

View Article and Find Full Text PDF

Recent studies have suggested the potential of innovative serologic tests for accurate and rapid detection of bovine tuberculosis (bTB). Dual Path Platform (DPP) technology has been used to develop rapid animal-side antibody tests for Mycobacterium bovis infection in a range of livestock and wildlife host species. The present study evaluated diagnostic performance of DPP BovidTB IgM/IgG assay designed for differential detection of bovine IgM and IgG antibodies against two chimeric antigens, DID38 and TBf2, respectively, using 662 well-characterized serum samples from M.

View Article and Find Full Text PDF

Objectives: Improved bovine tuberculosis (bTB) diagnostics with higher sensitivity and specificity are urgently required. A better understanding of the peripheral blood transcriptional response of Mycobacterium bovis-infected animals after bovine purified protein derivative (PPD-b) stimulation of whole blood-an important component of current bTB diagnostics-will provide new information for development of better diagnostics.

Methods: RNA sequencing (RNA-seq) was used to study the peripheral blood transcriptome after stimulation with PPD-b across four time points (-1 wk pre-infection, and +1 wk, +2 wk, and +10 wk post-infection) from a 14-week M.

View Article and Find Full Text PDF

Bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis (M. bovis), is the lead candidate vaccine for control of bovine tuberculosis (TB) in cattle. However, BCG vaccination sensitises cattle to bovine tuberculin, thus compromising the use of the current bovine TB surveillance tests.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a zoonotic disease caused mainly by , which is associated with major economic losses for milk and meat producers. The objective of this trial was to assess the efficacy of the BCG Russia strain in a cohort study performed under field conditions, with the vaccination of calves in seven dairy farms from a high prevalence area in central Chile. The trial was performed with 501 animals, subcutaneously vaccinated with 2-8 × 10 colony-forming units of BCG, whilst 441 matched control animals received a saline placebo.

View Article and Find Full Text PDF

The Bacillus Calmette-Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described.

View Article and Find Full Text PDF

Recent studies have demonstrated potential for serologic assays to improve surveillance and control programs for bovine tuberculosis. Due to the animal-to-animal variation of the individual antibody repertoires observed in bovine tuberculosis, it has been suggested that serodiagnostic sensitivity can be maximized by use of multi-antigen cocktails or genetically engineered polyproteins expressing immunodominant B-cell epitopes. In the present study, we designed three novel multiepitope polyproteins named BID109, TB1f, and TB2f, with each construct representing a unique combination of four full-length peptides of Mycobacterium bovis predominantly recognized in bovine tuberculosis.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is prevalent in intensive dairy farms in Ethiopia. Vaccination could be an alternative control approach given the socio-economic challenges of a test-and-slaughter control strategy. The efficacy of the BCG was evaluated on 40 Holstein-Friesian (HF) and zebu crossbred calves recruited from single intradermal cervical comparative tuberculin (SICCT) test negative herds and randomly allocated into two groups.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) challenges intensive dairy production in Ethiopia and implementation of the test and slaughter control strategy is not economically acceptable in the country. Vaccination of cattle with Bacillus Calmette-Guerin (BCG) could be an important adjunct to control, which would require a diagnostic test to differentiate Mycobacterium bovis (M. bovis)-infected and BCG-vaccinated animals (DIVA role).

View Article and Find Full Text PDF
Article Synopsis
  • Bovine tuberculosis is a widespread disease in cattle caused by specific bacteria, despite control efforts.
  • Researchers utilized high-throughput RNA sequencing to analyze the genetic responses in cattle blood samples before and after infection, focusing on various time points.
  • The study identified a 19-gene biosignature that increases in expression from one week to twelve weeks post-infection, which may serve as potential biomarkers for diagnosing the disease.
View Article and Find Full Text PDF

Background: Haematopoietic stem cells expressing the CD34 surface marker have been posited as a niche for complex bacilli during latent tuberculosis infection. Our aim was to determine whether complex DNA is detectable in CD34-positive peripheral blood mononuclear cells (PBMCs) isolated from asymptomatic adults living in a setting with a high tuberculosis burden.

Methods: We did a cross-sectional study in Ethiopia between Nov 22, 2017, and Jan 10, 2019.

View Article and Find Full Text PDF

Bovine tuberculosis (TB) is a chronic disease caused mainly by Mycobacterium bovis, a zoonotic pathogen that has a worldwide distribution causing serious economic losses for milk and meat producers. In Chile, the disease in dairy cattle has a heterogeneous distribution, where the Metropolitan Region concentrates the highest animal prevalence and the main challenge for the national control and eradication programme. In this epidemiological context, vaccination with the M.

View Article and Find Full Text PDF

Despite its potential for early diagnosis of subsp. (MAP) infection, the IFN-γ release assay is not used routinely, because of low specificity of the established crude antigen preparation Johnin (PPDj). Limited data are available assessing the potential of MAP-derived protein and lipopeptide antigens to replace PPDj in assays for goats, while cattle and sheep have been studied more extensively.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilize a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as .

View Article and Find Full Text PDF