It is unequivocal that human influence has warmed the planet, which is seriously affecting the planetary health including human health. Adapting climate change should not only be a slogan, but requires a united, holistic action and a paradigm shift from crisis response to an ambitious and integrated approach immediately. Recognizing the urgent needs to tackle the risk connection between climate change and One Health, the four key messages and recommendations that with the intent to guide further research and to promote international cooperation to achieve a more climate-resilient world are provided.
View Article and Find Full Text PDFCoastal ecosystem health is of vital importance to human well-being. Field investigations of major pollutants along the whole coast of China were carried out to explore associations between coastal development activities and pollutant inputs. Measurements of target pollutants such as PFAAs and PAHs uncovered notable levels in small estuary rivers.
View Article and Find Full Text PDFPursuing integrated research and decision-making to advance action on the sustainable development goals (SDGs) fundamentally depends on understanding interactions between the SDGs, both negative ones ("trade-offs") and positive ones ("co-benefits"). This quest, triggered by the 2030 Agenda, has however pointed to a gap in current research and policy analysis regarding how to think systematically about interactions across the SDGs. This paper synthesizes experiences and insights from the application of a new conceptual framework for mapping and assessing SDG interactions using a defined typology and characterization approach.
View Article and Find Full Text PDFHuman activity has already affected all parts of the ocean, with pollution increasing and fish-stocks plummeting. The UN's recent announcement of a Decade of Ocean Science provides a glimmer of hope, but scientists will need to work closely with decision-makers and society at large to get the ocean back on track.
View Article and Find Full Text PDFOcean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study.
View Article and Find Full Text PDFObservations of internal wave velocity fluctuations show that enhanced turbulent mixing over rough topography in the Southern Ocean is remarkably intense and widespread. Mixing rates exceeding background values by a factor of 10 to 1000 are common above complex bathymetry over a distance of 2000 to 3000 kilometers at depths greater than 500 to 1000 meters. This suggests that turbulent mixing in the Southern Ocean may contribute crucially to driving the upward transport of water closing the ocean's meridional overturning circulation, and thus needs to be represented in numerical simulations of the global ocean circulation and the spreading of biogeochemical tracers.
View Article and Find Full Text PDF