Publications by authors named "Martin Vilbaste"

Mobile phase pH is a critically important parameter in reversed-phase liquid chromatographic (RPLC) separations involving analytes that display acidic or basic properties in the pH range used for the mobile phase. The main problem in measuring mobile phase pH lies in the fact that RPLC mobile phases are typically aqueous-organic mixtures. In addition to experimental difficulties, the pH values refer to different aqueous-organic compositions that cannot be correctly compared.

View Article and Find Full Text PDF

In this study, quantitative gas chromatography-mass spectrometry (GC-MS) analysis was used to evaluate the influence of pigment concentration on the drying of oil paints. Seven sets of artificially aged self-made paints with different pigments (yellow ochre, red ochre, natural cinnabar, zinc white, Prussian blue, chrome oxide green, hematite + kaolinite) and linseed oil mixtures were analysed. In the pigment + linseed oil mixtures, linseed oil concentration varied in the range of 10 to 95 g/100 g.

View Article and Find Full Text PDF

Rationale: The purpose of the current work is to realistically assess the uncertainty contribution in gas chromatography/mass spectrometry (GC/MS) analysis originating from less-than-ideal derivatization efficiency.

Methods: As the exemplary analytical method a two-step derivatization method with KOH and BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide), applied for the analysis of fatty acid triglycerides (using real measurement data), was selected. The derivatization efficiencies were in the range 0.

View Article and Find Full Text PDF

In this report a gravimetric micro-Winkler titration method for determination of dissolved oxygen concentration in water is presented. Mathematical model of the method taking into account all influence factors is derived and an uncertainty analysis is carried out to determine the uncertainty contributions of all influence factors. The method is highly accurate: the relative expanded uncertainties (k=2) are around 1% in the case of small (9-10 g) water samples.

View Article and Find Full Text PDF