The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast.
View Article and Find Full Text PDFTeraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using pyridine containing boronic acid building blocks to increase the water solubility. Following our initial publication in which we have introduced the methodology in combination with sequential Pd-catalyzed cross-coupling for teraryl assembly, we can now report a complete set of pyridine based boronic acid building blocks decorated with side chains of all proteinogenic amino acids relevant for PPI (Ala, Arg, Asn, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, Val) to complement the core fragment set.
View Article and Find Full Text PDFTeraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using a benzene core unit featuring two halide leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for teraryl assembly. The use of para-bromo iodoarene core fragments resolved the issue of hydrolysis during cross-coupling that was observed when using triflate as a leaving group.
View Article and Find Full Text PDFTeraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for teraryl assembly. In previous publications we have introduced the methodology of 4-iodophenyltriflates decorated with the side chains of some of the proteinogenic amino acids.
View Article and Find Full Text PDF