Beech trees () are prominent keystone species of great economic and environmental value for central Europe, hosting a diverse mycobiome. The composition of endophyte communities may depend on tree health, plant organ or tissue, and growth habitat. To evaluate mycobiome communalities at local scales, buds, and twigs were sampled from two young healthy mountain beech stands in Bavaria, Germany, four kilometers apart.
View Article and Find Full Text PDFThe drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting ('Sphagnum farming'). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community.
View Article and Find Full Text PDFRecent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi - whether transient visitors or more persistent residents - may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxonomic identity of these fungi is crucial in such pursuits.
View Article and Find Full Text PDFSalicinoid phenolic glycosides are common defence substances in salicaceous trees and specialist leaf beetles use these compounds for their own defence against predators. Salicinoids vary qualitatively and qualitatively in aspen (Populus tremula) and this variation has a genetic basis. The foliar endophyte mycobiome is plentiful and we hypothesised that it is related to plant genotype, potentially mediated by salicinoid composition, and that interactions with the leaf beetle Chrysomela tremula may alter this relationship.
View Article and Find Full Text PDFThis paper introduces a new approach-the Principal Component Gradient Analysis (PCGA)-to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population.
View Article and Find Full Text PDFWith high-throughput sequencing (HTS), we are able to explore the hidden world of microscopic organisms to an unpre-cedented level. The fast development of molecular technology and statistical methods means that microbial ecologists must keep their toolkits updated. Here, we review and evaluate some of the more widely adopted and emerging techniques for analysis of diversity and community composition, and the inference of species interactions from co-occurrence data generated by HTS of marker genes.
View Article and Find Full Text PDFPlant-associated mycobiomes in extreme habitats are understudied and poorly understood. We analysed Illumina-generated ITS1 sequences from the needle mycobiome of white spruce (Picea glauca) at the northern treeline in Alaska (USA). Sequences were obtained from the same DNA that was used for tree genotyping.
View Article and Find Full Text PDFComparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany.
View Article and Find Full Text PDFDecaying wood hosts a large diversity of seldom investigated protists. Environmental sequencing offers novel insights into communities, but has rarely been applied to saproxylic protists. We investigated the diversity of bright-spored wood-inhabiting Myxomycetes by environmental sequencing.
View Article and Find Full Text PDFThe nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen genetic marker for the molecular identification of fungi in environmental sequencing and molecular ecology studies. Several analytical issues complicate such efforts, one of which is the formation of chimeric-artificially joined-DNA sequences during PCR amplification or sequence assembly. Several software tools are currently available for chimera detection, but rely to various degrees on the presence of a chimera-free reference dataset for optimal performance.
View Article and Find Full Text PDFPremise Of The Study: To understand the early evolution of mycorrhizal symbioses, it is important to know the fungal partners of gametophytes and sporophytes for basal lineages of vascular plants. Subterranean mycotrophic gametophytes of the clubmoss Diphasiastrum alpinum found at three localities gave an opportunity to study their morphology and anatomy and to identify and describe their hitherto unknown fungal endophytes. In addition, sporophytes were screened for fungal partners.
View Article and Find Full Text PDFMetagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of a community sequencing effort, rarefaction analysis of the ribosomal small subunit (SSU/16S/18S) gene in the metagenome is usually performed. The fragmentary, non-overlapping nature of SSU sequences in metagenomic libraries poses a problem for this analysis, however.
View Article and Find Full Text PDFResults of diversity and community ecology studies strongly depend on sampling depth. Completely surveyed communities follow log-normal distribution, whereas power law functions best describe incompletely censused communities. It is arguable whether the statistics behind those theories can be applied to voluminous next generation sequencing data in microbiology by treating individual DNA sequences as counts of molecular taxonomic units (MOTUs).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2010
Fungal research is experiencing a new wave of methodological improvements that most probably will boost mycology as profoundly as molecular phylogeny has done during the last 15 years. Especially the next generation sequencing technologies can be expected to have a tremendous effect on fungal biodiversity and ecology research. In order to realise the full potential of these exciting techniques by accelerating biodiversity assessments, identification procedures of fungi need to be adapted to the emerging demands of modern large-scale ecological studies.
View Article and Find Full Text PDFTwo cultivation-based isolation techniques - the incubation of leaf fragments (fragment plating) and dilution-to-extinction culturing on malt extract agar - were compared for recovery of foliar endophytic fungi from Fagus sylvatica near Greifswald, north-east Germany. Morphological-anatomical characters of vegetative and sporulating cultures and ITS sequences were used to assign morphotypes and taxonomic information to the isolates. Data analysis included species-accumulation curves, richness estimators, multivariate statistics and null model testing.
View Article and Find Full Text PDFSpecies richness and distribution patterns of wood-inhabiting fungi and mycetozoans (slime moulds) were investigated in the canopy of a Central European temperate mixed deciduous forest. Species richness was described with diversity indices and species-accumulation curves. Nonmetrical multidimensional scaling was used to assess fungal species composition on different tree species.
View Article and Find Full Text PDFThe ecological community of myxomycetes and myxomycete-like organisms (MMLO) in the canopy of living deciduous trees was studied in a riparian deciduous forest at Leipzig, Germany. A systematic survey carried out with a total of 146 moist chamber cultures resulted in 386 records of 37 taxa, with 32 myxomycetes, two myxobacteria, two protostelids and the fruit body forming ciliate Sorogena stoianovitchae, the latter recorded for the first time for Europe. With 94% of all cultures positive for MMLO, these organisms are present consistently in the investigated sections of white-rotten twigs attached to living trees at 10-30 m above the ground.
View Article and Find Full Text PDFStudies on fungal richness and ecology have been largely disregarded since the first intensive efforts to investigate organismal diversity in forest canopies. We used the Leipzig Canopy Crane research facility to sample wood-decaying fungi in a mixed deciduous forest canopy 10-30 m in height. The structural complexity of the canopy was analysed using different methods, including meteorological measurements.
View Article and Find Full Text PDF