Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities.
View Article and Find Full Text PDFWhole-genome duplication is a common macromutation with extensive impacts on gene expression, cellular function, and whole-organism phenotype. As a result, it has been proposed that polyploids have "general-purpose" genotypes that perform better than their diploid progenitors under stressful conditions. Here, we test this hypothesis in the context of stresses presented by anthropogenic pollutants.
View Article and Find Full Text PDFPlant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweed , we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal.
View Article and Find Full Text PDFPremise: Polyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant-herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background.
View Article and Find Full Text PDFCyanotoxins produced by harmful cyanobacteria blooms can damage freshwater ecosystems and threaten human health. Floating macrophytes may be used as a means of biocontrol by limiting light and resources available to cyanobacteria. However, genetic variation in macrophyte sensitivity to cyanotoxins could influence their suitability as biocontrol agents.
View Article and Find Full Text PDFWhole-genome duplication has long been appreciated for its role in driving phenotypic novelty in plants, often altering the way organisms interface with the abiotic environment. Only recently, however, have we begun to investigate how polyploidy influences interactions of plants with other species, despite the biotic niche being predicted as one of the main determinants of polyploid establishment. Nevertheless, we lack information about how polyploidy affects the diversity and composition of the microbial taxa that colonize plants, and whether this is genotype-dependent and repeatable across natural environments.
View Article and Find Full Text PDFEcological theory predicts that early generation polyploids ('neopolyploids') should quickly go extinct owing to the disadvantages of rarity and competition with their diploid progenitors. However, polyploids persist in natural habitats globally. This paradox has been addressed theoretically by recognizing that reproductive assurance of neopolyploids and niche differentiation can promote establishment.
View Article and Find Full Text PDFEcological explanations for species coexistence assume that species' traits, and therefore the differences between species, are fixed on short timescales. However, species' traits are not fixed, but can instead change rapidly as a consequence of phenotypic plasticity. Here we use a combined experimental-theoretical approach to demonstrate that plasticity in response to interspecific competition between two aquatic plants allows for species coexistence where competitive exclusion is otherwise predicted to occur.
View Article and Find Full Text PDFHerbicides can drift from intended plants onto non-target species. It remains unclear how drift impacts plant functional traits that are important for fitness. To address this gap, we conducted an experiment where fast cycling Brassica rapa plants were exposed to one of three drift concentrations (0.
View Article and Find Full Text PDFMicrobiomes are important to the survival and reproduction of their hosts. Although ecological and evolutionary processes can happen simultaneously in microbiomes, little is known about how microbiome eco-evolutionary dynamics determine host fitness. Here we show, using experimental evolution, that fitness of the aquatic plant Lemna minor is modified by interactions between the microbiome and the evolution of one member, Pseudomonas fluorescens.
View Article and Find Full Text PDFSpeciation is frequently initiated but rarely completed, a phenomenon hypothesized to arise due to the failure of nascent lineages to persist. Although a failure to persist often has ecological causes, key gaps exist between ecological and evolutionary theories that, if filled, would clarify when and why speciation succeeds or fails. Here, we apply ecological coexistence theory to show how the alignment between different forms of niche opportunity and niche use shape the initiation, progression, and completion of speciation.
View Article and Find Full Text PDFChanges in population dynamics due to interacting evolutionary and ecological processes are the direct result of responses in vital rates, that is stage-specific growth, survival and fecundity. Quantifying through which vital rates population fitness is affected, instead of focusing on population trends only, can give a more mechanistic understanding of eco-evolutionary dynamics. The aim of this study was to estimate the underlying demographic rates of aphid (Myzus persicae) populations.
View Article and Find Full Text PDFIncreasing evidence for rapid evolution suggests that the maintenance of species diversity in ecological communities may be influenced by more than purely ecological processes. Classic theory shows that interspecific competition may select for traits that increase niche differentiation, weakening competition and thus promoting species coexistence. While empirical work has demonstrated trait evolution in response to competition, if and how evolution affects the dynamics of the competing species-the key step for completing the required eco-evolutionary feedback-has been difficult to resolve.
View Article and Find Full Text PDFThe origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we investigate the phylogenetic distribution of livestock and crops, and compare their phenotypic traits with those of wild species.
View Article and Find Full Text PDFRecognition that evolution operates on the same timescale as ecological processes has motivated growing interest in eco-evolutionary dynamics. Nonetheless, generating sufficient data to test predictions about eco-evolutionary dynamics has proved challenging, particularly in natural contexts. Here we argue that genomic data can be integrated into the study of eco-evolutionary dynamics in ways that deepen our understanding of the interplay between ecology and evolution.
View Article and Find Full Text PDFExpression of the ectonucleotidase CD73 by tumor cells, stromal cells, and immune cells is associated in cancer with immune suppression. In this study, we investigated the role of CD73 on the activity of the anti-HER2/ErbB2 monoclonal antibody (mAb) trastuzumab. In a prospective, randomized phase III clinical trial evaluating the activity of trastuzumab, high levels of CD73 gene expression were associated significantly with poor clinical outcome.
View Article and Find Full Text PDFTumor cells use various ways to evade anti-tumor immune responses. Adenosine, a potent immunosuppressive metabolite, is often found elevated in the extracellular tumor microenvironment. Therefore, targeting adenosine-generating enzymes (CD39 and CD73) or adenosine receptors has emerged as a novel means to stimulate anti-tumor immunity.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2017
For millennia, humans have imposed strong selection on domesticated crops, resulting in drastically altered crop phenotypes compared with wild ancestors. Crop yields have increased, but a long-held hypothesis is that domestication has also unintentionally decreased plant defences against herbivores. To test this hypothesis, we conducted a phylogenetically controlled meta-analysis comparing insect herbivore resistance and putative plant defence traits between crops and their wild relatives.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2017
Agriculture is a dominant evolutionary force that drives the evolution of both domesticated and wild species. However, the various mechanisms of agriculture-induced evolution and their socio-ecological consequences are not often synthetically discussed. Here, we explore how agricultural practices and evolutionary changes in domesticated species cause evolution in wild species.
View Article and Find Full Text PDFInnate and adaptive immune cells play an important role in the therapeutic activity of anti-ErbB2 mAbs, such as trastuzumab. In the clinic, breast tumors poorly infiltrated with immune cells are more resistant to trastuzumab, and patients have a worse prognosis. Because type I and II IFNs are critical to the immune-mediated activity of anti-ErbB2 mAb, we investigated the effect of combining polyI:C and CpG with trastuzumab-like therapy in immunocompetent mouse models of ErbB2 breast cancer.
View Article and Find Full Text PDFEcologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence.
View Article and Find Full Text PDFMultiple non-redundant immunosuppressive pathways are active within the microenvironment of cancers to avoid tumor eradication by the immune system. Our results demonstrate that the CD73-adenosine pathway is a major immunosuppressive mechanism co-opted by ovarian tumors to escape antitumor immunity. In ovarian cancer patients, high CD73 expression correlates with poor outcome and impaired CD8(+) T cell immunosurveillance.
View Article and Find Full Text PDFThe cell surface nucleotidase CD73 is an immunosuppressive enzyme involved in tumor progression and metastasis. Although preclinical studies suggest that CD73 can be targeted for cancer treatment, the clinical impact of CD73 in ovarian cancer remains unclear. In this study, we investigated the prognostic value of CD73 in high-grade serous (HGS) ovarian cancer using gene and protein expression analyses.
View Article and Find Full Text PDFOur understanding of domestication comes largely from archeology and genetics. Here, we advocate using current ecological theory and methodologies to provide novel insights into the causes and limitations of evolution under cultivation, as well as into the wider ecological impacts of domestication. We discuss the importance of natural selection under cultivation, that is, the forces promoting differences in Darwinian fitness between plants in crop populations and of constraints, that is, limitations of diverse nature that, given values for trait X, shorten the range of variation of trait Y, during the domestication process.
View Article and Find Full Text PDFAgricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.
View Article and Find Full Text PDF