Hard nitride coatings are commonly employed to protect components subjected to friction, whereby such coatings should possess excellent tribomechanical properties in order to endure high stresses and temperatures. In this study, WN/NbN coatings are synthesized by using the cathodic-arc evaporation (CA-PVD) technique at various negative bias voltages in the 50-200 V range. The phase composition, microstructural features, and tribomechanical properties of the multilayers are comprehensively studied.
View Article and Find Full Text PDFThe surface properties of hydroxyapatite, including electric charge, can influence the biological response, tissue compatibility, and adhesion of biological cells and biomolecules. Results reported here help in understanding this influence by creating charged domains on hydroxyapatite thin films deposited on silicon using electron beam irradiation and investigating their shape, properties, and carbon contamination for different doses of incident injected charge by two methods. Photoluminescence laser scanning microscopy was used to image electrostatic charge trapped at pre-existing and irradiation-induced defects within these domains, while phase imaging in atomic force microscopy was used to image the carbon contamination.
View Article and Find Full Text PDFMicro-domains of modified surface potential (SP) were created on hydroxyapatite films by direct patterning by mid-energy focused electron beam, typically available as a microprobe of Scanning Electron Microscopes. The SP distribution of these patterns has been studied on sub-micrometer scale by the Kelvin Probe Force Microscopy method as well as lysozyme adsorption. Since the lysozyme is positively charged at physiological pH, it allows us to track positively and negatively charged areas of the SP patterns.
View Article and Find Full Text PDF