The physiological role of the plastid terminal oxidase (PTOX) involved in plastoquinol oxidation in chloroplasts has been investigated in vivo in tomato leaves. Enzyme activity was assessed by non-invasive methods based on the analysis of the kinetics of chlorophyll fluorescence changes. In the dark, the maximum PTOX rate was smaller than 1 electron per second per PSII.
View Article and Find Full Text PDFMitochondria are the powerhouses of eukaryotic cells as they feed metabolism with its major substrate. Oxidative-phosphorylation relies on the generation, by an electron/proton transfer chain, of an electrochemical transmembrane potential utilized to synthesize ATP. Although these fundamental principles are not a matter of debate, the emerging picture of the respiratory chain diverges from the linear and fluid scheme.
View Article and Find Full Text PDFThe mutation G143A in the inhibitor binding site of cytochrome b confers a high level of resistance to fungicides targeting the bc(1) complex. The mutation, reported in many plant-pathogenic fungi, has not evolved in fungi that harbor an intron immediately after the codon for G143 in the cytochrome b gene, intron bi2. Using Saccharomyces cerevisiae as a model organism, we show here that a codon change from GGT to GCT, which replaces glycine 143 with alanine, hinders the splicing of bi2 by altering the exon/intron structure needed for efficient intron excision.
View Article and Find Full Text PDF