Publications by authors named "Martin Traebert"

During drug discovery, small molecules are typically assayed in vitro for secondary pharmacology effects, which include ion channels relevant to cardiac electrophysiology. Compound A was an irreversible inhibitor of myeloperoxidase investigated for the treatment of peripheral artery disease. Oral doses in dogs at ≥5 mg/kg resulted in cardiac arrhythmias in a dose-dependent manner (at Cmax, free ≥1.

View Article and Find Full Text PDF

Introduction: In the framework of the IMI2-NeuroDeRisk consortium, three in vitro electrophysiology assays were compared to improve preclinical prediction of seizure-inducing liabilities.

Methods: Two cell models, primary rat cortical neurons and human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with hiPSC-derived astrocytes were tested on two different microelectrode array (MEA) platforms, Maestro Pro (Axion Biosystems) and Multiwell-MEA-System (Multi Channel Systems), in three separate laboratories. Pentylenetetrazole (PTZ) and/or picrotoxin (PTX) were included in each plate as positive (n = 3-6 wells) and ≤0.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a comprehensive list of these binding sites and developed pharmacophore models to assist in computer-based screening of drugs interacting with GABA receptors, leading to the discovery of amoxapine as a potential candidate.
  • * The study emphasizes a new approach that combines structural data and functional assays to better assess the seizure risks of compounds, moving beyond traditional testing methods like displacement screens.
View Article and Find Full Text PDF

The inhibition of the YAP-TEAD protein-protein interaction constitutes a promising therapeutic approach for the treatment of cancers linked to the dysregulation of the Hippo signaling pathway. The identification of a class of small molecules which potently inhibit the YAP-TEAD interaction by binding tightly to the Ω-loop pocket of TEAD has previously been communicated. This report details the further multi-parameter optimization of this class of compounds resulting in advanced analogs combining nanomolar cellular potency with a balanced ADME and off-target profile, and efficacy of these compounds in tumor bearing mice is demonstrated for the first time.

View Article and Find Full Text PDF

Substantial efforts have been recently committed to develop coronavirus disease-2019 (COVID-19) medications, and Hydroxychloroquine alone or in combination with Azithromycin has been promoted as a repurposed treatment. Although these drugs may increase cardiac toxicity risk, cardiomyocyte mechanisms underlying this risk remain poorly understood in humans. Therefore, we evaluated the proarrhythmia risk and inotropic effects of these drugs in the cardiomyocyte contractility-based model of the human heart.

View Article and Find Full Text PDF

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used preclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity.

View Article and Find Full Text PDF

In nonclinical toxicology the highest dose or exposure without test article-related adverse effects, known as the No Observed Adverse Effect Level (NOAEL), is a variable that may be determined. In safety pharmacology the vast majority of the endpoints measured are quantitative numeric functional endpoints such as changes in heart rate, blood pressure or respiratory frequency, endpoints that are usually not assessed using a defined framework of adversity. Therefore, we asked the question: is there a role for the NOAEL in safety pharmacology? To help answer this question, we conducted a survey via the Safety Pharmacology Society.

View Article and Find Full Text PDF

Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation.

View Article and Find Full Text PDF

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models.

View Article and Find Full Text PDF

Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1)-ones, exemplified by , that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens.

View Article and Find Full Text PDF

Introduction: Human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) preparations are increasingly employed in cardiac safety studies to support candidate drug selection and regulatory submissions. The value of hiPSC-CM-based approaches depends on their ability to recapitulate the cellular mechanisms responsible for cardiotoxicity as well as overall assay characteristics (thus defining model performance). Different expectations at different drug development stages define the utility of these human-derived models.

View Article and Find Full Text PDF

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used nonclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity.

View Article and Find Full Text PDF

Regulatory guidelines recommend specialised safety pharmacology assessments in animals to characterise drug-induced effects on the central nervous system (CNS) prior to first-in-human trials, including the functional observational battery or Irwin test (here collectively termed neurofunctional assessments). These assessments effectively detect overtly neurotoxic drugs; however, the suitability of the in vivo assessments to readily detect more subtle drug effects on the nervous system has been questioned. A survey was formulated by an international expert working group convened by the (NC3Rs) to capture practice in CNS neurofunctional assessment tests and opinions on the perceived impact of in vivo test battery endpoints.

View Article and Find Full Text PDF

Introduction: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines.

View Article and Find Full Text PDF

Introduction: Safety pharmacology is a growing discipline with scientists broadly distributed across international geographical regions. This electronic salary survey is the first to be distributed amongst the entire Safety Pharmacology Society (SPS) membership. An electronic survey was sent to all members of the Society.

View Article and Find Full Text PDF

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) may serve as a new assay for drug testing in a human context, but their validity particularly for the evaluation of inotropic drug effects remains unclear. In this blinded analysis, we compared the effects of 10 indicator compounds with known inotropic effects in electrically stimulated (1.5 Hz) hiPSC-CM-derived 3-dimensional engineered heart tissue (EHT) and human atrial trabeculae (hAT).

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown.

View Article and Find Full Text PDF

While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2Hz to quantitatively identify the pro-arrhythmic risk.

View Article and Find Full Text PDF

Central Nervous System (CNS)-related safety concerns are major contributors to delays and failure during the development of new candidate drugs (CDs). CNS-related safety data on 141 small molecule CDs from five pharmaceutical companies were analyzed to identify the concordance between rodent multi-parameter neurofunctional assessments (Functional Observational Battery: FOB, or Irwin test: IT) and the five most common adverse events (AEs) in Phase I clinical trials, namely headache, nausea, dizziness, fatigue/somnolence and pain. In the context of this analysis, the FOB/IT did not predict the occurrence of these particular AEs in man.

View Article and Find Full Text PDF

Lymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P(1)), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P(1) receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P(1) antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing.

View Article and Find Full Text PDF

Background: The ventricular components (QRS and QT) on the electrocardiogram (ECG) depend on the properties of ventricular action potentials that can be modulated by drugs via specific ion channels. However, the correlation of ECG ventricular waveforms with underlying ion actions is not well established and has been extensively debated.

Objective: To conduct a blinded in vitro assessment of the ionic mechanisms for drug-induced ECG changes.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias.

View Article and Find Full Text PDF

Inspired by natural product HDAC inhibitors, we prepared a series of conformationally restrained HDAC inhibitors based on the hydroxamic acid dacinostat (LAQ824, 7). Several scaffolds with improved biochemical and cellular potency, as well as attenuated hERG inhibition, were identified, suggesting that the introduction of molecular rigidity is a viable strategy to enhance HDAC binding and mitigate hERG liability. Further SAR studies around a 3-piperidin-3-ylindole moiety resulted in the discovery of compound 30, for which a unique conformation was speculated to contribute to overcoming increased lipophilicity and attenuating hERG binding.

View Article and Find Full Text PDF

Blockade of the delayed rectifier potassium channel current, I(Kr), has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I(Kr) [Redfern, W.S.

View Article and Find Full Text PDF