Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms.
View Article and Find Full Text PDFBackground: Pathogenic variants in , and cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable.
View Article and Find Full Text PDFMeiotic mapping, a linkage-based method for analyzing the recombinant progeny of a cross, has long been a cornerstone of genetic research. The yeast Saccharomyces cerevisiae is a powerful system because it is possible to isolate and cultivate the four products (spores) of a single meiotic event. However, the throughput of this process has historically been limited by the process of identifying tetrads in a heterogeneous population of vegetative cells, tetrads, and dyads followed by manual separation (dissection) of the spores contained in a tetrad.
View Article and Find Full Text PDFRationale: Stratification of asthma at the molecular level, especially using accessible biospecimens, could greatly enable patient selection for targeted therapy.
Objectives: To determine the value of blood analysis to identify transcriptional differences between clinically defined asthma and nonasthma groups, identify potential patient subgroups based on gene expression, and explore biological pathways associated with identified differences.
Methods: Transcriptomic profiles were generated by microarray analysis of blood from 610 patients with asthma and control participants in the U-BIOPRED (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes) study.
The IL-17 pathway is an established driver of psoriasis pathogenesis. We examined the detailed molecular and cellular effects of blockade of IL-17 signaling in human psoriatic skin before and following treatment with brodalumab, a competitive inhibitor of the IL-17 Receptor A subunit. Thousands of aberrantly expressed genes in lesional skin normalized within 2 weeks following brodalumab treatment, with conversion of the lesional psoriasis transcriptome to resemble that seen in nonlesional skin.
View Article and Find Full Text PDFBackground: In psoriasis, only limited overlap between sets of genes identified as differentially expressed (psoriatic lesional vs. psoriatic non-lesional) was found using statistical and fold-change cut-offs. To provide a framework for utilizing prior psoriasis data sets we sought to understand the consistency of those sets.
View Article and Find Full Text PDF