Background: Increased glycolysis is a hallmark of cancer metabolism, yet relatively little is known about this phenotype at premalignant stages of progression. Periodic ischemia occurs in the premalignant condition Barrett's esophagus (BE) due to tissue damage from chronic acid-bile reflux and may select for early adaptations to hypoxia, including upregulation of glycolysis.
Methodology/principal Findings: We compared rates of glycolysis and oxidative phosphorylation in four cell lines derived from patients with BE (CP-A, CP-B, CP-C and CP-D) in response to metabolic inhibitors and changes in glucose concentration.
We introduce a methodology based on the Luria-Delbruck fluctuation model for estimating the cell kinetics of clonally expanding populations. In particular, this approach allows estimation of the net cell proliferation rate, the extinction coefficient and the initial (viable) population size. We present a systematic approach based on spatial partitioning, which captures the local fluctuations of the number and sizes of individual clones.
View Article and Find Full Text PDFDue to interest in cell population heterogeneity, the development of new technology and methodologies for studying single cells has dramatically increased in recent years. The ideal single cell measurement system would be high throughput for statistical relevance, would measure the most important cellular parameters, and minimize disruption of normal cell function. We have developed a microwell array device capable of measuring single cell oxygen consumption rates (OCR).
View Article and Find Full Text PDF