We demonstrate the control of multiphoton electron excitations in InAs nanowires (NWs) by altering the crystal structure and the light polarization. Using few-cycle, near-infrared laser pulses from an optical parametric chirped-pulse amplification system, we induce multiphoton electron excitations in InAs nanowires with controlled wurtzite (WZ) and zincblende (ZB) segments. With a photoemission electron microscope, we show that we can selectively induce multiphoton electron emission from WZ or ZB segments of the same wire by varying the light polarization.
View Article and Find Full Text PDFNano-scale alloy systems with at least one dimension below 100 nm have different phase stabilities than those observed in the macro-scale systems due to a large surface to volume ratio. We have used the semi-empirical thermodynamic modelling, i.e.
View Article and Find Full Text PDF