The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains.
View Article and Find Full Text PDFSingle-pair Förster resonance energy transfer (spFRET) experiments using single-molecule burst analysis on a confocal microscope are an ideal tool to measure inter- and intramolecular distances and dynamics on the nanoscale. Different techniques have been developed to maximize the amount of information available in spFRET burst analysis experiments. Multiparameter fluorescence detection (MFD) is used to monitor a variety of fluorescence parameters simultaneously and pulsed interleaved excitation (PIE) employs direct excitation of the acceptor to probe its presence and photoactivity.
View Article and Find Full Text PDFGroEL and GroES form a chaperonin nano-cage for single protein molecules to fold in isolation. The folding properties that render a protein chaperonin dependent are not yet understood. Here, we address this question using a double mutant of the maltose-binding protein DM-MBP as a substrate.
View Article and Find Full Text PDFHeat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family.
View Article and Find Full Text PDFThe interaction between polyethylenimine (PEI) and phospholipid bilayers plays an important role in several biophysical applications such as DNA transfection of target cells. Despite considerable investigation into the nature of the interaction between PEI and phospholipid bilayers, the physical process remains poorly understood. In this paper, we study the impact of PEI on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles as a function of salt concentration using several techniques including dynamic (DLS) and static (SLS) light scattering, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR).
View Article and Find Full Text PDFA molecular model of the acidic compact state of apomyoglobin (A-state) from yellowfin tuna was obtained using molecular dynamics simulations (MD) by calculating multiple trajectories. To cause partial unfolding within a reasonable amount of CPU time, both an acidic environment (pH 3 and 0.15M NaCl) and a temperature jump to 500 K were needed.
View Article and Find Full Text PDFAlthough 1-alkanols have long been known to act as penetration enhancers and anesthetics, the mode of operation is not yet understood. In this study, long-time molecular dynamics simulations have been performed to investigate the effect of 1-alkanols of various carbon chain lengths onto the structure and dynamics of dimyristoylphosphatidylcholine bilayers. The simulations were complemented by microcalorimetry, continuous bleaching and film balance experiments.
View Article and Find Full Text PDF