Publications by authors named "Martin Sheppard"

Tocilizumab (TCZ), is a recombinant humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody which has a main use in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis (sJIA) and polyarticular juvenile idiopathic arthritis (pJIA). This article provides an overview of TCZ including looking into the past at the discovery of interleukin-6 (IL-6) as a pro-inflammatory cytokine. It also looks at how tocilizumab was developed, manufactured and tested to ensure both safety and efficacy in a human population.

View Article and Find Full Text PDF

People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method.

View Article and Find Full Text PDF

The use of gasolines blended with a range of ethanol concentrations may result in inhalation of vapors containing a variable combination of ethanol with other volatile gasoline constituents. The possibility of exposure and potential interactions between vapor constituents suggests the need to evaluate the possible risks of this complex mixture. Previously we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity.

View Article and Find Full Text PDF

The primary alternative to petroleum-based fuels is ethanol, which may be blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol and the lack of information about the neurodevelopmental toxicity of ethanol-blended fuels prompted the present work.

View Article and Find Full Text PDF

To provide useful alternatives to in vivo animal studies, in vitro assays for dose-response assessments of xenobiotic chemicals must use concentrations in media and target tissues that are within biologically-plausible limits. Determining these concentrations is a complex matter, which can be facilitated by applying physiologically-based pharmacokinetic (PBPK) models in an in vitro to in vivo extrapolation (IVIVE) paradigm. We used ethanol (EtOH), a ubiquitous chemical with defined metrics for in vivo and in vitro embryotoxicity, as a model chemical to evaluate this paradigm.

View Article and Find Full Text PDF

Ethanol (EtOH) exposure induces a variety of concentration-dependent neurological and developmental effects in the rat. Physiologically-based pharmacokinetic (PBPK) models have been used to predict the inhalation exposure concentrations necessary to produce blood EtOH concentrations (BEC) in the range associated with these effects. Previous laboratory reports often lacked sufficient detail to adequately simulate reported exposure scenarios associated with BECs in this range, or lacked data on the time-course of EtOH in target tissues (e.

View Article and Find Full Text PDF

Recent legislation has encouraged replacing petroleum-based fuels with renewable alternatives including ethanol, which is typically blended with gasoline in the United States at concentrations up to 10%, with allowances for concentrations up to 85% for some vehicles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol, and the lack of information about its toxicity by inhalation prompted the present work on its potential developmental effects in a rat model.

View Article and Find Full Text PDF

Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity.

View Article and Find Full Text PDF

Biofuel blends of 10% ethanol (EtOH) and gasoline are common in the USA, and higher EtOH concentrations are being considered (15-85%). Currently, no physiologically-based pharmacokinetic (PBPK) models are available to describe the kinetics of EtOH-based biofuels. PBPK models were developed to describe life-stage differences in the kinetics of EtOH alone in adult, pregnant, and neonatal rats for inhalation, oral, and intravenous routes of exposure, using data available in the open literature.

View Article and Find Full Text PDF

The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures.

View Article and Find Full Text PDF

Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified.

View Article and Find Full Text PDF

Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels.

View Article and Find Full Text PDF

A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons.

View Article and Find Full Text PDF

School officials and community citizens in Georgia were concerned about the airborne trichloroethylene (TCE) that was emanating from a nearby industrial facility that used TCE as a degreaser. No measurements of airborne TCE in the community were taken by public health officials or the industrial facility. The regulation of release of TCE from this facility was governed, in part, by mathematical model predictions of dispersion into the community.

View Article and Find Full Text PDF

Between 1996 and 2003, 186 cases of hepatitis E were serologically diagnosed. Of these, 17 (9%) were not associated with recent travel abroad. Patients were >55 years old (range, 56-82 years old) and tended to be male (76%).

View Article and Find Full Text PDF