Small voids in the absorber layer of thin-film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample-preparation artifacts. Here, synchrotron imaging is performed on a fully operational as-deposited solar cell containing a few tens of voids.
View Article and Find Full Text PDFBeing able to observe the formation of multi-material nanostructures in situ, simultaneously from a morphological and crystallographic perspective, is a challenging task. Yet, this is essential for the fabrication of nanomaterials with well-controlled composition exposing the most active crystallographic surfaces, as required for highly active catalysts in energy applications. To demonstrate how X-ray ptychography can be combined with scanning nanoprobe diffraction to realize multimodal imaging, we study growing CuO nanocubes and their transformation into Au nanocages.
View Article and Find Full Text PDFUnderstanding morphological changes of nanoparticles in solution is essential to tailor the functionality of devices used in energy generation and storage. However, we lack experimental methods that can visualize these processes in solution, or in electrolyte, and provide three-dimensional information. Here, we show how X-ray ptychography enables in situ nano-imaging of the formation and hollowing of nanoparticles in solution at 155 °C.
View Article and Find Full Text PDFImaging large areas of a sample non-destructively and with high resolution is of great interest for both science and industry. For scanning coherent X-ray diffraction microscopy, i. e.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2021
Many processes and materials in heterogeneous catalysis undergo dynamic structural changes depending on their chemical environment. Monitoring such dynamic changes can be challenging using conventional spectroscopic characterization tools, due to the high time resolution required. Here, a high-resolution 2D X-ray camera operating at 50 Hz full-frame rate was synchronized with a QEXAFS monochromator, enabling rapid spectro-microscopic imaging with chemical contrast over individual pixels.
View Article and Find Full Text PDFPtychography, a scanning coherent diffraction imaging method, can produce a high-resolution reconstruction of a sample and, at the same time, of the illuminating beam. The emergence of vacuum ultraviolet and X-ray free electron lasers (FELs) has brought sources with unprecedented characteristics that enable X-ray ptychography with highly intense and ultra-fast short-wavelength pulses. However, the shot-to-shot pulse fluctuations typical for FEL pulses and particularly the partial spatial coherence of self-amplified spontaneous emission (SASE) FELs lead to numerical complexities in the ptychographic algorithms and ultimately restrict the application of ptychography at FELs.
View Article and Find Full Text PDFWe report on the manufacturing and testing of the first nanofocusing refractive lenses made of single-crystal silicon carbide. We introduce the fabrication process based on lithography, followed by deep isotropic etching. The lenses were characterized at the energy of 12 keV at the beamline P06 of the synchrotron radiation source PETRA III.
View Article and Find Full Text PDFInhomogeneities and defects often limit the overall performance of thin-film solar cells. Therefore, sophisticated microscopy approaches are sought to characterize performance and defects at the nanoscale. Here, we demonstrate, for the first time, the simultaneous assessment of composition, structure, and performance in four-fold multi-modality.
View Article and Find Full Text PDFPtychographic X-ray microscopy is an ideal tool to observe chemical processes under in situ conditions. Chemical reactors, however, are often thicker than the depth of field, limiting the lateral spatial resolution in projection images. To overcome this limit and reach higher lateral spatial resolution, wave propagation within the sample environment has to be taken into account.
View Article and Find Full Text PDFPtychographic X-ray imaging at the highest spatial resolution requires an optimal experimental environment, providing a high coherent flux, excellent mechanical stability and a low background in the measured data. This requires, for example, a stable performance of all optical components along the entire beam path, high temperature stability, a robust sample and optics tracking system, and a scatter-free environment. This contribution summarizes the efforts along these lines to transform the nanoprobe station on beamline P06 (PETRA III) into the ptychographic nano-analytical microscope (PtyNAMi).
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a neurodegenerative disease characterized by an increase in intracytoplasmic iron concentration. Here the nanoscale iron distribution within single fibroblasts from FRDA patients was investigated using synchrotron-radiation-based nanoscopic X-ray fluorescence and X-ray in-line holography at the ID16A nano-imaging beamline of the ESRF. This unique probe was deployed to uncover the iron cellular two-dimensional architecture of freeze-dried FRDA fibroblasts.
View Article and Find Full Text PDFIn this Letter, we report on the creation of hard x-ray beams carrying orbital angular momentum of topological charge -ℏ and -3ℏ at a photon energy of 8.2 keV via spiral phase plates made out of fused silica by ultrashort-pulsed laser ablation. The phase plates feature a smooth phase ramp with a 0.
View Article and Find Full Text PDFTwo in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2018
Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with \bar{\sigma} = 0.
View Article and Find Full Text PDF