The essential core of the transcription coactivator Mediator consists of two conserved multiprotein modules, the head and middle modules. Whereas the structure of the head module is known, the structure of the middle module is lacking. Here we report a 3D model of a 6-subunit Mediator middle module.
View Article and Find Full Text PDFGene transcription by RNA polymerase (Pol) II requires the coactivator complex Mediator. Mediator connects transcriptional regulators and Pol II, and is linked to human disease. Mediator from the yeast Saccharomyces cerevisiae has a molecular mass of 1.
View Article and Find Full Text PDFWe present One Hand Clapping (OHC), a method for the detection of condition-specific interactions between transcription factors (TFs) from genome-wide gene activity measurements. OHC is based on a mapping between transcription factors and their target genes. Given a single case-control experiment, it uses a linear regression model to assess whether the common targets of two arbitrary TFs behave differently than expected from the genes targeted by only one of the TFs.
View Article and Find Full Text PDFTo monitor eukaryotic mRNA metabolism, we developed comparative dynamic transcriptome analysis (cDTA). cDTA provides absolute rates of mRNA synthesis and decay in Saccharomyces cerevisiae (Sc) cells with the use of Schizosaccharomyces pombe (Sp) as an internal standard. cDTA uses nonperturbing metabolic labeling that supersedes conventional methods for mRNA turnover analysis.
View Article and Find Full Text PDFGene transcription by RNA polymerase II requires the multiprotein coactivator complex Mediator. Mediator was identified two decades ago, but its molecular mechanisms remain poorly understood, because structural studies are hampered by its large size, modularity, and flexibility. Here we collect all available structural data on Mediator and discuss their functional implications.
View Article and Find Full Text PDFInitiation of RNA polymerase (Pol) II transcription requires assembly of the pre-initiation complex (PIC) at the promoter. In the classical view, PIC assembly starts with binding of the TATA box-binding protein (TBP) to the TATA box. However, a TATA box occurs in only 15% of promoters in the yeast Saccharomyces cerevisiae, posing the question how most yeast promoters nucleate PIC assembly.
View Article and Find Full Text PDFDifferent steps in gene expression are intimately linked. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to nuclear messenger RNA (mRNA) export. However, it is unknown how TREX is recruited to actively transcribed genes.
View Article and Find Full Text PDFRNA polymerase (Pol) II transcribes protein-coding genes in the nucleus of eukaryotic cells and consists of 12 polypeptide subunits. It is unknown how Pol II is imported into the nucleus. Here we show that Pol II nuclear import requires the protein Iwr1 and provide evidence for cyclic Iwr1 function.
View Article and Find Full Text PDFMediator is a multiprotein co-activator of RNA polymerase (Pol) II transcription. Mediator contains a conserved core that comprises the 'head' and 'middle' modules. We present here a structure-function analysis of the essential Med11/22 heterodimer, a part of the head module.
View Article and Find Full Text PDFNat Struct Mol Biol
April 2011
Eukaryotic transcription is regulated by interactions between gene-specific activators and the coactivator complex Mediator. Here we report the NMR structure of the Mediator subunit Med25 (also called Arc92) activator interaction domain (ACID) and analyze the structural and functional interaction of ACID with the archetypical acidic transcription activator VP16. Unlike other known activator targets, ACID forms a seven-stranded β-barrel framed by three helices.
View Article and Find Full Text PDFTo initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data.
View Article and Find Full Text PDFMediator is a modular multiprotein complex required for regulated transcription by RNA polymerase (Pol) II. Here, we show that the middle module of the Mediator core contains a submodule of unique structure and function that comprises the N-terminal part of subunit Med7 (Med7N) and the highly conserved subunit Med31 (Soh1). The Med7N/31 submodule shows a conserved novel fold, with two proline-rich stretches in Med7N wrapping around the right-handed four-helix bundle of Med31.
View Article and Find Full Text PDFA combination of crystallography, biochemistry, and gene expression analysis identifies the coactivator subcomplex Med8C/18/20 as a functionally distinct submodule of the Mediator head module. Med8C forms a conserved alpha-helix that tethers Med18/20 to the Mediator. Deletion of Med8C in vivo results in dissociation of Med18/20 from Mediator and in loss of transcription activity of extracts.
View Article and Find Full Text PDF