Publications by authors named "Martin Seifrid"

Article Synopsis
  • * This review discusses current SDL technology, applications in various scientific areas, and the implications for research and industry, showcasing enabling hardware and software.
  • * It also examines real-world SDL examples, their automation levels, and the challenges faced in different domains such as drug discovery, materials science, and genomics.
View Article and Find Full Text PDF

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics.

View Article and Find Full Text PDF

One of the biggest obstacles to successful polymer property prediction is an effective representation that accurately captures the sequence of repeat units in a polymer. Motivated by the success of data augmentation in computer vision and natural language processing, we explore augmenting polymer data by iteratively rearranging the molecular representation while preserving the correct connectivity, revealing additional substructural information that is not present in a single representation. We evaluate the effects of this technique on the performance of machine learning models trained on three polymer datasets and compare them to common molecular representations.

View Article and Find Full Text PDF

Conventional materials discovery is a laborious and time-consuming process that can take decades from initial conception of the material to commercialization. Recent developments in materials acceleration platforms promise to accelerate materials discovery using automation of experiments coupled with machine learning. However, most of the automation efforts in chemistry focus on synthesis and compound identification, with integrated target property characterization receiving less attention.

View Article and Find Full Text PDF

We must accelerate the pace at which we make technological advancements to address climate change and disease risks worldwide. This swifter pace of discovery requires faster research and development cycles enabled by better integration between hypothesis generation, design, experimentation, and data analysis. Typical research cycles take months to years.

View Article and Find Full Text PDF

Self-driving laboratories, in the form of automated experimentation platforms guided by machine learning algorithms, have emerged as a potential solution to the need for accelerated science. While new tools for automated analysis and characterization are being developed at a steady rate, automated synthesis remains the bottleneck in the chemical space accessible to self-driving laboratories. Combining automated and manual synthesis efforts immediately significantly expands the explorable chemical space.

View Article and Find Full Text PDF

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques.

View Article and Find Full Text PDF

Understanding the relationship between molecular structure and solid-state arrangement informs about the design of new organic semiconductor (OSC) materials with improved optoelectronic properties. However, determining their atomic structure remains challenging. Here, we report the lattice organization of two non-fullerene acceptors (NFAs) determined using microcrystal electron diffraction (MicroED) from crystals not traceable by X-ray crystallography.

View Article and Find Full Text PDF

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(CF) is a superior dopant to the other Lewis acids investigated (BF, BBr and AlCl).

View Article and Find Full Text PDF

Due to the anisotropic nature of charge transport through most organic semiconductors, the orientation of the conjugated backbone is of great relevance because it may affect final device properties. Herein, we present a set of four nearly isostructural molecular organic semiconducting materials whose orientation changes drastically with a two-atom change in the conjugated framework. We investigate the X-ray diffraction patterns of these materials in the thin film, both as-deposited from solution and following melt-annealing.

View Article and Find Full Text PDF

A detailed study of a high-k fluoropolymer gate dielectric material, poly(vinylidene fluoride- co-hexafluoropropylene) [P(VDF-HFP)], is presented as a guide to achieve low operational voltage and electrically stable device performance. The large dipole moment of C-F dipoles in P(VDF-HFP) is responsible for its high dielectric constant as well as its potentially ferroelectric behavior that must be minimized to avoid hysteretic current-voltage characteristics. A range of material grades and processing conditions are explored and are shown to have a significant effect on the degree of hysteresis observed in device-transfer characteristics.

View Article and Find Full Text PDF

High-performance organic semiconducting materials are reliant upon subtle changes in structure across different length scales. These morphological features control relevant physical properties and ultimately device performance. By combining in situ NMR spectroscopy and theoretical calculations, the conjugated small molecule TT is shown to exhibit distinct temperature-dependent local structural features that are related to macroscopic properties.

View Article and Find Full Text PDF

Three cyclopentadithiophene-difluorophenylene copolymers (named PhF2,3, PhF2,5, and PhF2,6), which differ by the arrangement of fluorines on the phenylene structural unit, were designed and synthesized for the fabrication of organic field-effect transistors (OFETs). Single crystal structures of model compounds representative of the backbone and density functional theory (DFT) were used to estimate the backbone shape for each copolymer. The different substitution arrangements impact the backbone secondary structure through different nonbonding F···H interactions.

View Article and Find Full Text PDF

Two conjugated oligoelectrolytes (COEs), WMG1 and WMG2, were designed with the goal of achieving near infrared absorption and high photothermal conversion efficiency. Specifically, electron-rich thiophene and electron-poor benzo[1,2-c:4,5-c']bis[1,2,5]thiadiazole subunits were introduced into the conjugated core to modulate the optical gap and to reduce the fluorescence emission efficiency. WMG1 and WMG2 show absorption maxima at around 800 nm, which favors tissue penetration.

View Article and Find Full Text PDF

Two electronically delocalized molecules were designed as models to understand how molecular shape impacts the tradeoff between solubility and crystallization tendencies in molecular semiconductors. The more soluble compound TT contains a non-planar bithiophene central fragment, whereas CT has a planar cyclopentadithiophene unit. Calorimetry studies show that CT can crystallize more easily than TT.

View Article and Find Full Text PDF

The high temperature performance oforganic field-effect transistorsbased on a molecular organic semiconductor with intermediate dimensions, namely X2, is evaluated. Hole mobility is stable, even at 200-250 °C. Changes in device characteristics at high temperature are reversible across multiple cycles of high temperature operation.

View Article and Find Full Text PDF

Synthesis, structural and characterization data are provided for Pt(II) and Ir(III) complexes cyclometalated with 2-(corannulene)pyridine (corpy), (corpy)Pt(dpm) and (corpy)Ir(ppz)2 (dpm = dipivaloylmethanato, ppz = 1-phenylpyrazolyl). A third compound, (phenpy)Ir(ppz)2 (phenpy = 2-(5-phenanthryl)pyridyl), was also prepared to mimic the steric bulk of (corpy)Ir(ppz)2. X-ray analysis reveals bowl depths of 0.

View Article and Find Full Text PDF

Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms.

View Article and Find Full Text PDF