Publications by authors named "Martin Schlerf"

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture.

View Article and Find Full Text PDF

Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded by various issues, including illumination variation throughout the crop growing season, the effect of which on the retrieval performance is not well understood at present.

View Article and Find Full Text PDF

This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes.

View Article and Find Full Text PDF

Canopy chlorophyll content (CCC) is an essential ecophysiological variable for photosynthetic functioning. Remote sensing of CCC is vital for a wide range of ecological and agricultural applications. The objectives of this study were to explore simple and robust algorithms for spectral assessment of CCC.

View Article and Find Full Text PDF

There is growing concern that increasing eutrophication causes degradation of coastal ecosystems. Studies in terrestrial ecosystems have shown that increasing the concentration of nitrogen in soils contributes to the acidification process, which leads to leaching of base cations. To test the effects of eutrophication on the availability of base cations in mangroves, we compared paired leaf and soil nutrient levels sampled in Nypa fruticans and Rhizophora spp.

View Article and Find Full Text PDF

Conversion of mangroves to shrimp ponds creates fragmentation and eutrophication. Detection of the spatial variation of foliar nitrogen is essential for understanding the effect of eutrophication on mangroves. We aim (i) to estimate nitrogen variability across mangrove landscapes of the Mahakam delta using airborne hyperspectral remote sensing (HyMap) and (ii) to investigate links between the variation of foliar nitrogen mapped and local environmental variables.

View Article and Find Full Text PDF

Recent studies revealed that plant-soil biotic interactions may cause changes in above-ground plant chemistry. It would be a new step in below-ground-above-ground interaction research if such above-ground chemistry changes could be efficiently detected. Here we test how hyperspectral reflectance may be used to study such plant-soil biotic interactions in a nondestructive and rapid way.

View Article and Find Full Text PDF

Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities.

View Article and Find Full Text PDF

Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.

View Article and Find Full Text PDF