Publications by authors named "Martin Salaj"

According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations.

View Article and Find Full Text PDF

The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium-pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15.

View Article and Find Full Text PDF

The retrosplenial cortex (RSC) is a mesocortical region broadly involved with memory and navigation. It shares many characteristics with the perirhinal cortex (PRC), both of which appear to be significantly involved in the spreading of epileptic activity. We hypothesized that RSC possesses an interneuronal composition similar to that of PRC.

View Article and Find Full Text PDF

The claustrum is a telencephalic structure which consists of dorsal segment adjoining the insular cortex and a ventral segment termed also endopiriform nucleus (END). The dorsal segment (claustrum) is divided into a dorsal and ventral zone, while the END is parcellated into dorsal, ventral and intermediate END. The claustrum and the END consist of glutamatergic projection neurons and GABAergic local interneurons coexpressing calcium binding proteins.

View Article and Find Full Text PDF

The perirhinal cortex (PRC) composed of areas 35 and 36 forms an important route for activity transfer between the hippocampus-entorhinal cortex and neocortex. Its function in memory formation and consolidation as well as in the initiation and spreading of epileptic activity was already partially elucidated. We studied the general pattern of calretinin (CR), parvalbumin (PV) and calbindin (CB) immunoreactivity and its corrected relative optical density (cROD) as well as morphological features and density of CR and PV immunoreactive (CR+, PV+) interneurons in the rat PRC.

View Article and Find Full Text PDF