TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored.
View Article and Find Full Text PDFThis study investigates the phase composition, microstructure, and their influence on the properties of Mo-W-C nanocomposite films deposited by dual-source magnetron sputtering. The synthesised films consist of metal carbide nanograins embedded in an amorphous carbon matrix. It has been found that nanograins are composed of the hexagonal β-(Mo + W)C phase at a low carbon source power.
View Article and Find Full Text PDFHard nitride coatings are commonly employed to protect components subjected to friction, whereby such coatings should possess excellent tribomechanical properties in order to endure high stresses and temperatures. In this study, WN/NbN coatings are synthesized by using the cathodic-arc evaporation (CA-PVD) technique at various negative bias voltages in the 50-200 V range. The phase composition, microstructural features, and tribomechanical properties of the multilayers are comprehensively studied.
View Article and Find Full Text PDFNew conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic.
View Article and Find Full Text PDFThe present work investigates the influence of isothermal annealing on the microstructure and oxidation behavior of nanocomposite coatings. AlTiSiN/TiSiN coatings with TiSiN adhesive layer were deposited onto a high-speed steel substrate via physical vapor deposition. The coatings were investigated in the as-deposited state as well as after annealing in air at 700, 800, 900 and 1000 °C, respectively.
View Article and Find Full Text PDFDrilling of Carbon Fiber-Reinforced Plastic/Titanium alloy (CFRP/Ti) stacks represents one of the most widely used machining methods for making holes to fasten assemblies in civil aircraft. However, poor machinability of CFRP/Ti stacks in combination with the inhomogeneous behavior of CFRP and Ti alloy face manufacturing and scientific community with a problem of defining significant factors and conditions for ensuring hole quality in the CFRP/Ti alloy stacks. Herein, we investigate the effects of drilling parameters on drilling temperature and hole quality in CFRP/Ti alloy stacks by applying an artificial neuron network (ANN).
View Article and Find Full Text PDFDue to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time.
View Article and Find Full Text PDFThe paper examines the surface functionalization of a new type of Ti-graphite composite, a dental biomaterial prepared by vacuum low-temperature extrusion of hydrogenated-dehydrogenated titanium powder mixed with graphite flakes. Two experimental surfaces were prepared by laser micromachining applying different levels of incident energy of the fiber nanosecond laser working at 1064 nm wavelength. The surface integrity of the machined surfaces was evaluated, including surface roughness parameters measurement by contact profilometry and confocal laser scanning microscopy.
View Article and Find Full Text PDFBiocompatible materials with excellent mechanical properties as well as sophisticated surface morphology and chemistry are required to satisfy the requirements of modern dental implantology. In the study described in this article, an industrial-grade fibre nanosecond laser working at 1064 nm wavelength was used to micromachine a new type of a biocompatible material, Ti-graphite composite prepared by vacuum low-temperature extrusion of hydrogenated-dehydrogenated (HDH) titanium powder mixed with graphite flakes. The effect of the total laser energy delivered to the material per area on the machined surface morphology, roughness, surface element composition and phases transformations was investigated and evaluated by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), confocal laser-scanning microscopy (CLSM) and X-ray diffraction analysis (XRD).
View Article and Find Full Text PDFNanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of -80 to -120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was investigated. It was clear that if bias voltage increased, nanohardness increased in the range from -80 V to -120 V.
View Article and Find Full Text PDFThe microstructure, phase constitution, and corrosion performance of as-solidified AlPdCo and AlPdCo alloys (element concentrations in at.%) have been investigated in the present work. The alloys were prepared by arc-melting of Al, Pd, and Co lumps in argon.
View Article and Find Full Text PDF