Publications by authors named "Martin S Williamson"

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth () RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human- chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually.

View Article and Find Full Text PDF

Background: Resistance to diamide insecticides in Lepidoptera is known to be caused primarily by amino acid changes on the ryanodine receptor (RyR). Recently, two new target site mutations, G4946V and I4790M, have emerged in populations of diamondback moth, Plutella xylostella, as well as in other lepidopteran species, and both mutations have been shown empirically to decrease diamide efficacy. Here, we quantify the impact of the I4790M mutation on diamide activation of the receptor, as compared to alterations at the G4946 locus.

View Article and Find Full Text PDF
Article Synopsis
  • The aphid Myzus persicae is a major agricultural pest known for quickly developing resistance to insecticides, making it a challenge for farmers.
  • Researchers generated a comprehensive genome assembly and sequenced over 110 clonal lines from worldwide populations to study the genetic basis of this resistance.
  • The study found significant genetic diversity in resistance mutations influenced by the aphid's host plants, revealing both repeated mutations at the same genetic locus and new resistance mechanisms, which can inform better pest control strategies.
View Article and Find Full Text PDF

The plant bug Lygus pratensis Linnaeus (Hemiptera: Miridae) is an important insect pest of alfalfa in grassland farming in northern China. A field population of L. pratensis was selected in the laboratory for 14 consecutive generations with lambda-cyhalothrin to generate 42.

View Article and Find Full Text PDF

The cabbage stem flea beetle, L. is a major pest of winter oilseed rape in several European countries. Traditionally, neonicotinoid and pyrethroid insecticides have been widely used for control of , but in recent years, following the withdrawal of neonicotinoid insecticide seed treatments, control failures have occurred due to an over reliance on pyrethroids.

View Article and Find Full Text PDF

The evolution of resistance to drugs and pesticides poses a major threat to human health and food security. Neonicotinoids are highly effective insecticides used to control agricultural pests. They target the insect nicotinic acetylcholine receptor and mutations of the receptor that confer resistance have been slow to develop, with only one field-evolved mutation being reported to date.

View Article and Find Full Text PDF

Host shifts can lead to ecological speciation and the emergence of new pests and pathogens. However, the mutational events that facilitate the exploitation of novel hosts are poorly understood. Here, we characterize an adaptive walk underpinning the host shift of the aphid to tobacco, including evolution of mechanisms that overcame tobacco chemical defenses.

View Article and Find Full Text PDF

The buff-tailed bumblebee, Bombus terrestris audax is an important pollinator within both landscape ecosystems and agricultural crops. During their lifetime bumblebees are regularly challenged by various environmental stressors including insecticides. Historically the honey bee (Apis mellifera spp.

View Article and Find Full Text PDF

Voltage-gated sodium channels (VGSCs) are a major target site for the action of pyrethroid insecticides and resistance to pyrethroids has been ascribed to mutations in the VGSC gene. VGSCs in insects are encoded by only one gene and their structural and functional diversity results from posttranscriptional modification, particularly, alternative splicing. Using whole cell patch clamping of neurons from pyrethroid susceptible (wild-type) and resistant strains (s-kdr) of housefly, Musca domestica, we have shown that the V for activation and steady state inactivation of sodium currents (I) is significantly depolarised in s-kdr neurons compared with wild-type and that 10 nM deltamethrin significantly hyperpolarised both of these parameters in the neurons from susceptible but not s-kdr houseflies.

View Article and Find Full Text PDF

The diamondback moth, Plutella xylostella, is a damaging pest of cruciferous crops, and has evolved resistance to many of the insecticides used for control, including members of the diamide class. Previous work on the molecular basis of resistance to diamides has documented mutations in the target-site, the ryanodine receptor, in resistant populations of P. xylostella worldwide.

View Article and Find Full Text PDF

Recent work has shown that two bumblebee (Bombus terrestris) cytochrome P450s of the CYP9Q subfamily, CYP9Q4 and CYP9Q5, are important biochemical determinants of sensitivity to neonicotinoid insecticides. Here, we report the characterisation of a third P450 gene CYP9Q6, previously mis-annotated in the genome of B. terrestris, encoding an enzyme that metabolises the N-cyanoamidine neonicotinoids thiacloprid and acetamiprid with high efficiency.

View Article and Find Full Text PDF

Background: The tomato leafminer, Tuta absoluta, is an economically important pest of tomatoes in Europe, Africa, Asia and South America. In the UK this species is controlled using an integrated pest management (IPM) programme which incorporates the insecticides spinosad and chlorantraniliprole. In response to UK grower concerns of loss of efficacy of these compounds at certain sites, insecticide bioassays were performed on five populations collected from four commercial glasshouses and potential mechanisms of resistance investigated.

View Article and Find Full Text PDF

The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides.

View Article and Find Full Text PDF

Glutamate-gated chloride channels (GluCls) are found only in invertebrates and mediate fast inhibitory neurotransmission. The structural and functional diversity of GluCls are produced through assembly of multiple subunits and via posttranscriptional alternations. Alternative splicing is the most common way to achieve this in insect GluCls and splicing occurs primarily at exons 3 and 9.

View Article and Find Full Text PDF

The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e.

View Article and Find Full Text PDF

We discovered the A301S mutation in the RDL GABA-gated chloride channel of fiprole resistant rice brown planthopper, Nilaparvata lugens populations by DNA sequencing and SNP calling via RNASeq. Ethiprole selection of two field N. lugens populations resulted in strong resistance to both ethiprole and fipronil and resulted in fixation of the A301S mutation, as well as the emergence of another mutation, Q359E in one of the selected strains.

View Article and Find Full Text PDF

Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3.

View Article and Find Full Text PDF

Background: Myzus persicae s.l. is a major crop pest globally and has evolved resistance to a range of insecticide classes making it increasingly difficult to control in some areas.

View Article and Find Full Text PDF

The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel.

View Article and Find Full Text PDF

Insect ryanodine receptors (RyR) are the molecular target-site for the recently introduced diamide insecticides. Diamides are particularly active on Lepidoptera pests, including tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). High levels of diamide resistance were recently described in some European populations of T.

View Article and Find Full Text PDF

Ion channels remain the primary target of most of the small molecule insecticides. This review examines how the subunit composition of heterologously expressed receptors determines their insecticide-specific pharmacology and how the pharmacology of expressed receptors differs from those found in the insect nervous system. We find that the insecticide-specific pharmacology of some receptors, like that containing subunits of the Rdl encoded GABA receptor, can be reconstituted with very few of the naturally occurring subunits expressed.

View Article and Find Full Text PDF

Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) α6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance mediated by exon skipping.

View Article and Find Full Text PDF

Diamide insecticides, such as flubendiamide and chlorantraniliprole, are a new class of insecticide with a novel mode of action, selectively activating the insect ryanodine receptor (RyR). They are particularly active against lepidopteran pests of cruciferous vegetable crops, including the diamondback moth, Plutella xylostella. However, within a relatively short period following their commercialisation, a comparatively large number of control failures have been reported in the field.

View Article and Find Full Text PDF

The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance.

View Article and Find Full Text PDF

Spinosad, a widely used and economically important insecticide, targets the nicotinic acetylcholine receptor (nAChRs) of the insect nervous system. Several studies have associated loss of function mutations in the insect nAChR α6 subunit with resistance to spinosad, and in the process identified this particular subunit as the specific target site. More recently a single non-synonymous point mutation, that does not result in loss of function, was identified in spinosad resistant strains of three insect species that results in an amino acid substitution (G275E) of the nAChR α6 subunit.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: