The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that is best known for its role in mediating the toxicity of many environmental contaminants such as 2,3,7,8 tetrachlorodibenzo-p-dioxin. However, the endogenous role of AHR, especially with respect to the apoptotic process, is largely unknown and contradictory. In this report, we have used a mouse hepatoma cell line (Hepa1c1c7) and its AHR-deficient derivative (LA1) to examine the effect of differing AHR levels on apoptosis susceptibility, in particular, apoptosis regulated by the intrinsic pathway.
View Article and Find Full Text PDFMutation and aberrant expression of apoptotic proteins are hallmarks of cancer. These changes prevent proapoptotic signals from being transmitted to executioner caspases, thereby averting apoptotic death and allowing cellular proliferation. Caspase-3 is the key executioner caspase, and it exists as an inactive zymogen that is activated by upstream signals.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
August 2005
The tumor suppressor protein p53 is currently a target of emerging drug therapies directed toward neurodegenerative diseases, such as Alzheimer's and Parkinson's, and side effects associated with cancer treatments. Of this group of drugs, the best characterized is pifithrin-alpha, a small molecule that inhibits p53-dependent apoptosis through an undetermined mechanism. In this study, we have used a number of molecular approaches to test the hypothesis that pifithrin-alpha acts as an aryl hydrocarbon receptor (AhR) agonist and, in this manner, inhibits the actions of p53.
View Article and Find Full Text PDF