Even if the scene before our eyes remains static for some time, we might explore it differently compared with how we examine static images, which are commonly used in studies on visual attention. Here we show experimentally that the top-down expectation of changes in natural scenes causes clearly distinguishable gaze behavior for visually identical scenes. We present free-viewing eye-tracking data of 20 healthy adults on a new video dataset of natural scenes, each mapped for its potential for change (PfC) in independent ratings.
View Article and Find Full Text PDFSaccadic eye movements successively project the saccade target on two retinal locations: a peripheral one before the saccade, and the fovea after the saccade. Typically, performance in discriminating stimulus features changes between these two projections is very poor. However, a short (∼200 ms) blanking of the target upon saccade onset drastically improves performance, demonstrating that a precise signal of the peripheral projection is retained during the saccade.
View Article and Find Full Text PDFIntroduction: Pathophysiological theories of schizophrenia (SZ) symptoms posit an abnormality in using predictions to guide behavior. One such prediction is based on imminent movements, via corollary discharge signals (CD) that relay information about planned movement kinematics to sensory brain regions. Empirical evidence suggests a reduced influence of sensorimotor predictions in individuals with SZ within multiple sensory systems, including in the visual system.
View Article and Find Full Text PDFBackground And Hypothesis: Corollary discharge (CD) signals are "copies" of motor signals sent to sensory areas to predict the corresponding input. They are a posited mechanism enabling one to distinguish actions generated by oneself vs external forces. Consequently, altered CD is a hypothesized mechanism for agency disturbances in psychosis.
View Article and Find Full Text PDFVisual working memory and actions are closely intertwined. Memory can guide our actions, but actions also impact what we remember. Even during memory maintenance, actions such as saccadic eye movements select content in visual working memory, resulting in better memory at locations that are congruent with the action goal as compared to incongruent locations.
View Article and Find Full Text PDFThe complexity of natural scenes makes it challenging to experimentally study the mechanisms behind human gaze behavior when viewing dynamic environments. Historically, eye movements were believed to be driven primarily by space-based attention towards locations with salient features. Increasing evidence suggests, however, that visual attention does not select locations with high saliency but operates on attentional units given by the objects in the scene.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Perceptual learning is the ability to enhance perception through practice. The hallmark of perceptual learning is its specificity for the trained location and stimulus features, such as orientation. For example, training in discriminating a grating's orientation improves performance only at the trained location but not in other untrained locations.
View Article and Find Full Text PDFWe implement Adelson and Bergen's spatiotemporal energy model with extension to three-dimensional (x-y-t) in an interactive tool. It helps gain an easy understanding of early (first-order) visual motion perception. We demonstrate its usefulness in explaining an assortment of phenomena, including some that are typically not associated with the spatiotemporal energy model.
View Article and Find Full Text PDFHigh-acuity foveal processing is vital for human vision. Nonetheless, little is known about how the preparation of large-scale rapid eye movements (saccades) affects visual sensitivity in the center of gaze. Based on findings from passive fixation tasks, we hypothesized that during saccade preparation, foveal processing anticipates soon-to-be fixated visual features.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
September 2023
Natural environments provide a rich spatiotemporal context that allows for visual objects to be differentiated based on different types of information: their absolute or relative spatial or temporal coordinates, or their ordinal positions in a spatial or temporal sequence. Here, we investigated which spatial and temporal properties are incidentally encoded along with to-be-remembered features to provide reference frames in visual working memory (VWM). We tested the different possibilities in a spatiotemporal color change-detection task by transforming spatial and/or temporal structures of item presentation at retrieval relative to encoding.
View Article and Find Full Text PDFJ Neurophysiol
February 2022
The appearance of a salient stimulus rapidly and automatically inhibits saccadic eye movements. Curiously, this "oculomotor freezing" response is triggered only by stimuli that the observer reports seeing. It remains unknown, however, whether oculomotor freezing is linked to the observer's sensory experience or their decision that a stimulus was present.
View Article and Find Full Text PDFBehav Brain Sci
September 2021
In active agents, sensory and motor processes form an inevitable bond. This wedding is particularly striking for saccadic eye movements - the prime target of Shadmehr and Ahmed's thesis - which impose frequent changes on the retinal image. Changes in movement vigor (latency and speed), therefore, will need to be accompanied by changes in visual and attentional processes.
View Article and Find Full Text PDFCorollary discharge (CD) signals are "copies" of motor signals sent to sensory regions that allow animals to adjust sensory consequences of self-generated actions. Autism spectrum disorder (ASD) is characterized by sensory and motor deficits, which may be underpinned by altered CD signaling. We evaluated oculomotor CD using the blanking task, which measures the influence of saccades on visual perception, in 30 children with ASD and 35 typically developing (TD) children.
View Article and Find Full Text PDFRapid eye movements (saccades) incessantly shift objects across the retina. To establish object correspondence, the visual system is thought to match surface features of objects across saccades. Here, we show that an object's intrasaccadic retinal trace-a signal previously considered unavailable to visual processing-facilitates this match making.
View Article and Find Full Text PDFPsychon Bull Rev
February 2022
Different visual attributes effectively guide attention to specific items in visual working memory (VWM), ensuring that particularly important memory contents are readily available. Predictable temporal structures contribute to this efficient use of VWM: items are prospectively prioritized when they are expected to be needed. Occasionally, however, visual events only gain relevance through their timing after they have passed.
View Article and Find Full Text PDFThe pre-saccadic attention shift-a rapid increase in visual sensitivity at the target-is an inevitable precursor of saccadic eye movements. Saccade targets are often parts of the objects that are of interest to the active observer. Although the link between saccades and covert attention shifts is well established, it remains unclear if pre-saccadic attention selects the location of the eye movement target or rather the entire object that occupies this location.
View Article and Find Full Text PDFGoal-directed eye movements (saccades) bring peripheral objects of interest into high-acuity foveal vision. In preparation for the incoming foveal image, the perception of the saccade target may sharpen gradually before the eye movement is executed. Indeed, previous studies suggest that pre-saccadic attention shifts enhance sensitivity to high spatial frequencies (SFs) more than sensitivity to lower SFs.
View Article and Find Full Text PDFVisual events are structured in space and time, yet models of visual working memory (VWM) have largely relied on tasks emphasizing spatial aspects. Here, we show that temporal properties of visual events are incidentally encoded along with spatial properties. In five experiments, participants performed change-detection tasks, in which items had unique spatial and temporal coordinates at encoding.
View Article and Find Full Text PDFWhen visual objects shift rapidly across the retina, they produce motion blur. Intra-saccadic visual signals, caused incessantly by our own saccades, are thought to be eliminated at early stages of visual processing. Here we investigate whether they are still available to the visual system and could-in principle-be used as cues for localizing objects as they change locations on the retina.
View Article and Find Full Text PDFRepeated exposure to a consistent trans-saccadic step in the position of the saccadic target reliably produces a change of saccadic gain, a well-established trans-saccadic motor learning phenomenon known as saccadic adaptation. Trans-saccadic changes can also produce perceptual effects. Specifically, a systematic increase or decrease in the size of the object that is being foveated changes the perceptually equivalent size between fovea and periphery.
View Article and Find Full Text PDFSelection for visual short-term memory (vstm) provides a basis for many cognitive functions. Saccadic eye movements sway this selection in favor of stimuli previously seen at locations congruent with their target. In three experiments, we provide converging evidence that this saccadic selection is implemented as a fundamental, inevitable selection process, rather than a top-down strategy.
View Article and Find Full Text PDFKeynote at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019, (Video stream not punlished on internet).
View Article and Find Full Text PDFTo investigate visual perception around the time of eye movements, vision scientists manipulate stimuli contingent upon the onset of a saccade. For these experimental paradigms, timing is especially crucial, because saccade offset imposes a deadline on the display change. Although efficient online saccade detection can greatly improve timing, most algorithms rely on spatial-boundary techniques or absolute-velocity thresholds, which both suffer from weaknesses: late detections and false alarms, respectively.
View Article and Find Full Text PDF