Publications by authors named "Martin Potts"

Purpose: Asymptomatic SARS-CoV-2 infections were widely reported during the COVID-19 pandemic, acting as a hidden source of infection. Many existing studies investigating asymptomatic immunity failed to recruit true asymptomatic individuals. Thus, we conducted a longitudinal cohort study to evaluate humoral- and cell-mediated responses to infection and vaccination in well-defined asymptomatic young adults (the Asymptomatic COVID-19 in Education [ACE] cohort).

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC).

View Article and Find Full Text PDF
Article Synopsis
  • Elderly individuals (70 years and older) show weaker antibody responses to a COVID-19 booster compared to younger people after receiving an initial two-dose vaccine series with AZD1222 and a third mRNA booster.
  • The elderly have a specific type of B cells (anomalous spike-specific B cells) that may impair their ability to neutralize the virus effectively after the booster.
  • Interestingly, when elderly individuals receive three doses of mRNA vaccines, their antibody responses are comparable to those younger than 70, suggesting that different vaccine technologies influence immune memory formation.
View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant.

View Article and Find Full Text PDF

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced proteomic techniques to discover that the HCMV protein RL1 degrades the restriction factor Schlafen-11 (SLFN11), which plays a role in limiting HCMV infection.
  • * The findings suggest that SLFN11, previously known for its role against RNA viruses, also inhibits HCMV, providing insights into antiviral immunity and mechanisms of viral evasion.
View Article and Find Full Text PDF

The cellular response to interferon (IFN) is essential for antiviral immunity, IFN-based therapy and IFN-related disease. The plasma membrane (PM) provides a critical interface between the cell and its environment, and is the initial portal of entry for viruses. Nonetheless, the effect of IFN on PM proteins is surprisingly poorly understood, and has not been systematically investigated in primary immune cells.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell.

View Article and Find Full Text PDF

The endoribonuclease Dicer is a key component of the human RNA interference pathway and is known for its role in cytoplasmic microRNA production. Recent findings suggest that noncanonical Dicer generates small noncoding RNA to mediate the DNA damage response (DDR). Here, we show that human Dicer is phosphorylated in the platform-Piwi/Argonaute/Zwille-connector helix cassette (S1016) upon induction of DNA damage.

View Article and Find Full Text PDF