Publications by authors named "Martin Palus"

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus responsible for severe infections of the central nervous system. Although neurons are predominantly targeted, specific involvement of microglia in pathogenesis of TBE is not yet fully understood. In this study, the susceptibility of human microglia to TBEV is investigated, focusing on productive infection and different immune responses of different viral strains.

View Article and Find Full Text PDF

Tick-borne encephalitis (TBE) is a neuroviral disease that ranges in severity from a mild febrile illness to a severe and life-threatening meningoencephalitis or encephalomyelitis. There is increasing evidence that susceptibility to tick-borne encephalitis virus (TBEV)-induced disease and its severity are largely influenced by host genetic factors, in addition to other virus- and host-related factors. In this study, we investigated the contribution of selected single nucleotide polymorphisms (SNPs) in innate immunity genes to predisposition to TBE in humans.

View Article and Find Full Text PDF

Tick-borne encephalitis (TBE) is a severe neuroinfection of humans. Dogs are also commonly infected with tick-borne encephalitis virus (TBEV). These infections are usually asymptomatic, but sometimes show clinical signs similar to those seen in humans and can be fatal.

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne encephalitis virus (TBEV) is a significant health issue that affects the nervous system in humans, and a human monoclonal antibody named T025 shows promise in neutralizing this virus.
  • Research indicates that when TBEV encounters antibodies like T025 or T028, it can develop mutations that reduce its ability to cause disease, specifically through changes in its envelope proteins (EDII and EDIII).
  • The study found that using both T025 and T028 together enhances the neutralization of TBEV and prevents the virus from evolving to escape these antibodies.
View Article and Find Full Text PDF

Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts.

View Article and Find Full Text PDF

Background: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway.

Methods: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System.

View Article and Find Full Text PDF

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes.

View Article and Find Full Text PDF

The tick-borne encephalitis virus (TBEV) causes a most important viral life-threatening illness transmitted by ticks. The interactions between the virus and ticks are largely unexplored, indicating a lack of experimental tools and systematic studies. One such tool is recombinant reporter TBEV, offering antibody-free visualization to facilitate studies of transmission and interactions between a tick vector and a virus.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) play an important role in central nervous system infections. We analysed the levels of 8 different MMPs in the cerebrospinal fluid (CSF) of 89 adult patients infected with tick-borne encephalitis (TBE) virus and compared them with the levels in a control group. MMP-9 was the only MMP that showed significantly increased CSF levels in TBE patients.

View Article and Find Full Text PDF

Unlabelled: Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes.

View Article and Find Full Text PDF

Extensive axonal and neuronal loss is the main cause of severe manifestations and poor outcomes in tick-borne encephalitis (TBE). Phosphorylated neurofilament heavy subunit (pNF-H) is an essential component of axons, and its detection in cerebrospinal fluid (CSF) or serum can indicate the degree of neuroaxonal damage. We examined the use of pNF-H as a biomarker of neuroaxonal injury in TBE.

View Article and Find Full Text PDF

Up to 170 tick-borne viruses (TBVs) have been identified to date. However, there is a paucity of information regarding TBVs and their interaction with respective vectors, limiting the development of new effective and urgently needed control methods. To overcome this gap of knowledge, it is essential to reproduce transmission cycles under controlled laboratory conditions.

View Article and Find Full Text PDF

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses.

View Article and Find Full Text PDF

Dogs are frequently infected with the tick-borne encephalitis virus (TBEV). However, to date, only a few clinically manifest cases of tick-borne encephalitis (TBE) have been reported in dogs. In this study, three-month-old beagle dogs were infected with TBEV through a subcutaneous injection.

View Article and Find Full Text PDF

are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected have been reported to harbour , but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an laboratory colony, into tick cell culture.

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne encephalitis virus (TBEV) poses a significant health threat with no specific treatments available, while mouse monoclonal antibodies show protection against it.* -
  • This study examined the human immune response, finding that individuals who recovered from TBEV infection had the strongest neutralizing antibodies compared to vaccinated individuals.* -
  • The research identified a key structural region in the virus that these powerful antibodies target and demonstrated that low doses of antibodies can effectively treat infected mice.*
View Article and Find Full Text PDF

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-19. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-19. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2).

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge.

View Article and Find Full Text PDF

Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor.

View Article and Find Full Text PDF
Article Synopsis
  • TBEV, a virus spread by ticks, can lead to serious neurological diseases in humans, making its study crucial.
  • Researchers created a modified version of the virus, called mCherry-TBEV, that expresses a fluorescent protein, allowing for easier detection and growth studies.
  • This new virus can be used for high-throughput drug screening and measuring antibody responses in vaccinated individuals and infected animals.
View Article and Find Full Text PDF

A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions.

View Article and Find Full Text PDF