Publications by authors named "Martin P Keough"

Veriflow® Listeria monocytogenes (LM) is a molecular based assay for the presumptive detection of Listeria monocytogenes from environmental surfaces, dairy, and ready-to-eat (RTE) food matrixes (hot dogs and deli meat). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post PCR amplification and requires only 24 h of enrichment for maximum sensitivity. The Veriflow LM system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification, and does not require complex data analysis.

View Article and Find Full Text PDF

Veriflow Campylobacter is a molecular based assay for the presumptive and qualitative detection of the most common occurring foodborne Campylobacter species: C. jejuni and C. coli.

View Article and Find Full Text PDF

Correcting T-cell immunosuppression may unleash powerful antitumor responses; however, knowledge about the mechanisms and modifiers that may be targeted to improve therapy remains incomplete. Here, we report that polyamine elevation in cancer, a common metabolic aberration in aggressive lesions, contributes significantly to tumor immunosuppression and that a polyamine depletion strategy can exert antitumor effects that may also promote immunity. A polyamine-blocking therapy (PBT) that combines the well-characterized ornithine decarboxylase (ODC) inhibitor difluoromethylornithine (DFMO) with AMXT 1501, a novel inhibitor of the polyamine transport system, blocked tumor growth in immunocompetent mice but not in athymic nude mice lacking T cells.

View Article and Find Full Text PDF

IDO2 is implicated in tryptophan catabolism and immunity but its physiological functions are not well established. Here we report the characterization of mice genetically deficient in IDO2, which develop normally but exhibit defects in IDO-mediated T-cell regulation and inflammatory responses. Construction of this strain was prompted in part by our discovery that IDO2 function is attenuated in macrophages from Ido1 (-/-) mice due to altered message splicing, generating a functional mosaic with implications for interpreting findings in Ido1 (-/-) mice.

View Article and Find Full Text PDF

Previous reports have shown that elevated polyamine biosynthesis is sufficient to promote skin tumorigenesis in susceptible mouse strains. We hypothesized that increased activity of epidermal ornithine decarboxylase (ODC), a key regulatory enzyme in polyamine biosynthesis, may suppress the cutaneous immune response in addition to stimulating proliferation. Using an ODCER transgenic mouse model in which ODC is targeted to the epidermis, we examined the effect of ODC overexpression in keratinocytes on a classic contact hypersensitivity (CHS) response.

View Article and Find Full Text PDF

The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones.

View Article and Find Full Text PDF

Tumor cells respond to hypoxic stress by upregulating a variety of genes involved in glucose uptake, glycolysis, and angiogenesis, all essential to maintaining nutrient availability and intracellular ATP levels. Adenosine monophosphate-dependent kinase (AMPK) is a key sensor for cellular homeostasis and is highly sensitive to changes in AMP:ATP ratios. The two catalytic AMPK alpha isoforms (AMPKalpha1, AMPKalpha2) were investigated with respect to their expression, cellular distribution, and contribution to VEGF expression under hypoxic stress in human U373 glioblastoma cells.

View Article and Find Full Text PDF

Background: Intratumor hypoxia has been shown to promote more aggressive and metastatic cancer phenotypes that are associated with treatment resistance and poor prognosis. Cellular proliferation and its control are known to be important components of tumor progression. Hypoxia induces cell-cycle arrest in cultured cell lines, possibly via up-regulation of the cyclin-dependent kinase inhibitor p27.

View Article and Find Full Text PDF