Publications by authors named "Martin P Gelfand"

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

Time-resolved super-resolution microscopy was used in conjunction with scanning electron microscopy to image individual colloidal CdSe/CdS semiconductor quantum dots (QD) and QD dimers. The photoluminescence (PL) lifetimes, intensities, and structural parameters were acquired with nanometer scale spatial resolution and sub-nanosecond time resolution. The combination of these two techniques was more powerful than either alone, enabling us to resolve the PL properties of individual QDs within QD dimers as they blinked on and off, measure interparticle distances, and identify QDs that may be participating in energy transfer.

View Article and Find Full Text PDF

Calibration of the gain and digital conversion factor of an EMCCD is necessary for accurate photon counting. We present a new method to quickly calibrate multiple gain settings of an EMCCD camera. Acquiring gain-series calibration data and analyzing the resulting images with the EMCCD noise model more accurately estimates the gain response of the camera.

View Article and Find Full Text PDF

Previous fluorescence correlation spectroscopy (FCS) measurements of DNA hairpin folding dynamics revealed at least three conformational states of the DNA are present, distinguished by the brightness of fluorescent dye-quencher labels. Rapid fluctuations between two of the states occurred on time scales observable by FCS. A third state that was static on the FCS time scale was also observed.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is a powerful tool in the time-resolved analysis of nonreacting or reacting molecules in solution, based on fluorescence intensity fluctuations. However, conventional (second-order) FCS alone is insufficient to measure all parameters needed to describe a reaction or mixture, including concentrations, fluorescence brightnesses, and forward and reverse rate constants. For this purpose, correlations of higher powers of fluorescence intensity fluctuations can be calculated to yield additional information from the single-photon data stream collected in an FCS experiment.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is a primary tool in the time-resolved analysis of nonreacting or reacting molecules in solution, based on fluorescence intensity fluctuations. However, conventional FCS alone is insufficient for a complete determination of reaction or mixture parameters. In an accompanying article, a technique for the computation of artifact-free higher-order correlations with microsecond time resolution was described.

View Article and Find Full Text PDF

Coincident photon histogram measurements of fluorescence antibunching via confocal microscopy correlated with atomic force microscopy were carried out on (i) individual CdSe/ZnS core/shell quantum dots (QDs), (ii) several well separated QDs, and (iii) clusters of QDs. Individual QDs and well separated QDs showed the expected degree of antibunching for a single emitter and several independent emitters, respectively. The degree of antibunching in small, compact clusters was more characteristic of a single emitter than multiple emitters.

View Article and Find Full Text PDF