Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization.
View Article and Find Full Text PDFImplant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials.
View Article and Find Full Text PDFElectronic devices based on two-dimensional semiconductors suffer from limited electrical stability because charge carriers originating from the semiconductors interact with defects in the surrounding insulators. In field-effect transistors, the resulting trapped charges can lead to large hysteresis and device drifts, particularly when common amorphous gate oxides (such as silicon or hafnium dioxide) are used, hindering stable circuit operation. Here, we show that device stability in graphene-based field-effect transistors with amorphous gate oxides can be improved by Fermi-level tuning.
View Article and Find Full Text PDFTransition-metal dichalcogenide monolayers and heterostructures are highly tunable material systems that provide excellent models for physical phenomena at the two-dimensional (2D) limit. While most studies to date have focused on electrons and electron-hole pairs, phonons also play essential roles. Here, we apply ultrafast electron diffraction and diffuse scattering to directly quantify, with time and momentum resolution, electron-phonon coupling (EPC) in monolayer molybdenum disulfide and phonon transport from the monolayer to a silicon nitride substrate.
View Article and Find Full Text PDFIn this work, we present the fabrication and characterization of bulk-heterojunction solar cells on monolayer graphene (MLG) with nickel-grids (Ni-grid) as semitransparent conductive electrode. The electrodes showed a maximum transmittance of 90% (calculated in 300-800 nm range) and a sheet resistance down to 35 Ω/□. On these new anodes, we fabricated TCO free BHJ-SCs using PTB7 blended with PC70BM fullerene derivative as active layer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
SnSe is a layered material that currently holds the record for bulk thermoelectric efficiency. The primary determinant of this high efficiency is thought to be the anomalously low thermal conductivity resulting from strong anharmonic coupling within the phonon system. Here we show that the nature of the carrier system in SnSe is also determined by strong coupling to phonons by directly visualizing polaron formation in the material.
View Article and Find Full Text PDFThe complex coupling between charge carriers and phonons is responsible for diverse phenomena in condensed matter. We apply ultrafast electron diffuse scattering to unravel electron-phonon coupling phenomena in 1T-TiSe in both momentum and time. We are able to distinguish effects due to the real part of the many-body bare electronic susceptibility, [Formula: see text], from those due to the electron-phonon coupling vertex, , by following the response of semimetallic (normal-phase) 1T-TiSe to the selective photo-doping of carriers into the electron pocket at the Fermi level.
View Article and Find Full Text PDFIntegrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding.
View Article and Find Full Text PDFGraphene-based photodetectors have shown responsivities up to 10 A/W and photoconductive gains up to 10 electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity to graphene, which induces a shift of the graphene chemical potential upon absorption, hence modifying its channel resistance. However, due to the semimetallic nature of graphene, the readout requires dark currents of hundreds of microamperes up to milliamperes, leading to high power consumption needed for the device operation.
View Article and Find Full Text PDFIt has been argued that current saturation in graphene field-effect transistors (GFETs) is needed to get optimal maximum oscillation frequency ( ). This paper investigates whether velocity saturation can help to get better current saturation and if that correlates with enhanced . We have fabricated 500 nm GFETs with high extrinsic (37 GHz), and later simulated with a drift-diffusion model augmented with the relevant factors that influence carrier velocity, namely: short-channel electrostatics, saturation velocity effect, graphene/dielectric interface traps, and self-heating effects.
View Article and Find Full Text PDFWe demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: (1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. (2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. (3) The off-set voltage in the Hall signal can be reduced.
View Article and Find Full Text PDFACS Appl Electron Mater
September 2019
Two-dimensional (2D) materials, such as graphene, are seen as potential candidates for fabricating electronic devices and circuits on flexible substrates. Inks or dispersions of 2D materials can be deposited on flexible substrates by large-scale coating techniques, such as inkjet printing and spray coating. One of the main issues in coating processes is nonuniform deposition of inks, which may lead to large variations of properties across the substrates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2019
We combine ultrafast electron diffraction and time-resolved terahertz spectroscopy measurements to link structure and electronic transport properties during the photoinduced insulator-metal transitions in vanadium dioxide. We determine the structure of the metastable monoclinic metal phase, which exhibits antiferroelectric charge order arising from a thermally activated, orbital-selective phase transition in the electron system. The relative contribution of the photoinduced monoclinic and rutile metals to the time-dependent and pump-fluence-dependent multiphase character of the film is established, as is the respective impact of these two distinct phase transitions on the observed changes in terahertz conductivity.
View Article and Find Full Text PDFThis paper details a software ecosystem comprising three free and open-source Python packages for processing raw ultrafast electron scattering (UES) data and interactively exploring the processed data. The first package, , is graphical user-interface program and library for interactive exploration of UES data. Under the hood, makes use of , an extensions of to streaming array-processing, for high-throughput parallel data reduction.
View Article and Find Full Text PDFThis work reports on the fabrication and characterization of a graphene based variable optical attenuator integrated on a photonic SiN waveguide and operating at 855 nm wavelength. The variable optical attenuator utilizes the gate voltage dependent optical absorption of a graphene layer, located in the evanescent field of the waveguide. A maximum attenuation of 17 dB is obtained at -3 V gate voltages for a device length of 700 µm.
View Article and Find Full Text PDFVertical metal-insulator-graphene (MIG) diodes for radio frequency (RF) power detection are realized using a scalable approach based on graphene grown by chemical vapor deposition and TiO as barrier material. The temperature dependent current flow through the diode can be described by thermionic emission theory taking into account a bias induced barrier lowering at the graphene TiO interface. The diodes show excellent figures of merit for static operation, including high on-current density of up to 28 A cm, high asymmetry of up to 520, strong maximum nonlinearity of up to 15, and large maximum responsivity of up to 26 V, outperforming state-of-the-art metal-insulator-metal and MIG diodes.
View Article and Find Full Text PDFThermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss.
View Article and Find Full Text PDFThe excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil.
View Article and Find Full Text PDFGraphene has been considered as a promising material for opto-electronic devices, because of its tunable and wideband optical properties. In this work, we demonstrate electro-refractive phase modulation in graphene at wavelengths from 1530 to 1570 nm. By integrating a gated graphene layer in a silicon-waveguide based Mach-Zehnder interferometer, the key parameters of a phase modulator like change in effective refractive index, insertion loss and absorption change are extracted.
View Article and Find Full Text PDFThe sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere.
View Article and Find Full Text PDFGraphene is considered a promising material for broadband opto-electronics because of its linear and gapless band structure. Its optical conductivity can be significantly tuned electrostatically by shifting the Fermi level. Using mentioned property, we experimentally demonstrate a graphene based electro-absorption modulator with very low insertion loss.
View Article and Find Full Text PDFThe road to the realization of complex integrated circuits based on graphene remains an open issue so far. Current graphene based integrated circuits are limited by low integration depth and significant doping variations, representing major road blocks for the success of graphene in future electronic devices. Here we report on the realization of graphene based integrated inverters and ring oscillators.
View Article and Find Full Text PDFWe report on a method for the fabrication of graphene on a silicon dioxide substrate by solid-state dissolution of an overlying stack of a silicon carbide and a nickel thin film. The carbon dissolves in the nickel by rapid thermal annealing. Upon cooling, the carbon segregates to the nickel surface forming a graphene layer over the entire nickel surface.
View Article and Find Full Text PDFOne key issue for all nanoimprint techniques is an appropriate method for the fabrication of desirable molds. We report on a novel flexible mold fabrication process-pressure-assisted molding (PAM)-for high resolution soft ultraviolet nanoimprint lithography (soft UV-NIL). In PAM, enhanced master filling is achieved by applying an external pressure during the mold fabrication process.
View Article and Find Full Text PDF