Publications by authors named "Martin Orth"

Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown.

View Article and Find Full Text PDF

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process. Metabolic heterogeneity has also been observed, yet its role in cancer progression is less explored.

View Article and Find Full Text PDF

Many cancers are characterized by gene fusions encoding oncogenic chimeric transcription factors (TFs) such as EWS::FLI1 in Ewing sarcoma (EwS). Here, we find that EWS::FLI1 induces the robust expression of a specific set of novel spliced and polyadenylated transcripts within otherwise transcriptionally silent regions of the genome. These neogenes (NGs) are virtually undetectable in large collections of normal tissues or non-EwS tumors and can be silenced by CRISPR interference at regulatory EWS::FLI1-bound microsatellites.

View Article and Find Full Text PDF

Neuroblastoma (NB) accounts for 15% of cancer-related deaths in childhood despite considerable therapeutic improvements. While several risk factors, including MYCN amplification and alterations in RAS and p53 pathway genes, have been defined in NB, the clinical outcome is very variable and difficult to predict. Since genes of the mechanistic target of rapamycin (mTOR) pathway are upregulated in MYCN-amplified NB, we aimed to define the predictive value of the mTOR substrate-encoding gene eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) expression in NB patients.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is a hallmark of cancer. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression.

View Article and Find Full Text PDF

Cancer cells display an increased plasticity in their lipid metabolism, which includes the conversion of palmitate to sapienate via the enzyme fatty acid desaturase 2 (FADS2). We find that FADS2 expression correlates with mammalian target of rapamycin (mTOR) signaling and sterol regulatory element-binding protein 1 (SREBP-1) activity across multiple cancer types and is prognostic in some cancer types. Accordingly, activating mTOR signaling by deleting tuberous sclerosis complex 2 (Tsc2) or overexpression of SREBP-1/2 is sufficient to increase FADS2 mRNA expression and sapienate metabolism in mouse embryonic fibroblasts (MEFs) and U87 glioblastoma cells, respectively.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.

View Article and Find Full Text PDF

Metabolic reprogramming is a hallmark of cancer. Such reprogramming entails the up-regulation of the expression of specific mitochondrial proteins, thus increasing the burden on the mitochondrial protein quality control. However, very little is known about the specificity of interactions between mitochondrial chaperones and their clients, or to what extent the mitochondrial chaperone-client co-expression is coordinated.

View Article and Find Full Text PDF

Soft tissue sarcomas (STSs) are heterogeneous cancers associated with poor prognosis due to high rates of local recurrence and metastasis. The programmed death receptor ligand 1 (PD-L1) is expressed in several cancers. PD-L1 interacts with its receptor, PD-1, on the surface of tumor-infiltrating lymphocytes (TILs), thereby attenuating anti-cancer immune response.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive cancer displaying an undifferentiated small-round-cell histomorphology that can be easily confused with a broad spectrum of differential diagnoses. Using comparative transcriptomics and immunohistochemistry (IHC), we previously identified BCL11B and GLG1 as potential specific auxiliary IHC markers for -positive EwS. Herein, we aimed at validating the specificity of both markers in a far larger and independent cohort of EwS (including -positive cases) and differential diagnoses.

View Article and Find Full Text PDF

Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse.

View Article and Find Full Text PDF

Oncogenesis of Ewing sarcoma (EwS), the second most common malignant bone tumor of childhood and adolescence, is dependent on the expression of chimeric EWSR1-ETS fusion oncogenes, most often EWSR1-FLI1 (E/F). E/F expression leads to dysregulation of focal adhesions (FAs) enhancing the migratory capacity of EwS cells. Here, we show that, in EwS cell lines and tissue samples, focal adhesion kinase (FAK) is expressed and phosphorylated at Y397 in an E/F-dependent way involving Ezrin.

View Article and Find Full Text PDF

In prostate adenocarcinoma (PCa), distinction between indolent and aggressive disease is challenging. Around 50% of PCa are characterized by TMPRSS2-ERG (T2E)-fusion oncoproteins defining two molecular subtypes (T2E-positive/negative). However, current prognostic tests do not differ between both molecular subtypes, which might affect outcome prediction.

View Article and Find Full Text PDF

Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes.

View Article and Find Full Text PDF

Background: Up to 30-40% of Ewing sarcoma (EwS) patients with non-metastatic disease develop local or metastatic relapse within a time span of 2-10 years. This is in part caused by the absence of prognostic biomarkers that can identify high-risk patients and thus assign them to risk-adapted monitoring and treatment regimens. Since cancer stemness has been associated with tumour relapse and poor patient outcomes, we investigated in the current study the prognostic potential SOX2 (sex determining region Y box 2) - a major transcription factor involved in development and stemness - which was previously described to contribute to the undifferentiated phenotype of EwS.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive cancer characterized by chromosomal translocations generating fusions of the EWSR1 gene with ETS transcription factors (in 85% FLI1). EWSR1-FLI1 induces gene expression via binding to enhancer-like GGAA-microsatellites, whose activity correlates with the number of consecutive GGAA-repeats. Herein we investigate the role of the secretory neuropeptide CALCB (calcitonin-related polypeptide β) in EwS, which signals via the CGRP (calcitonin gene-related peptide) receptor complex, containing RAMP1 (receptor activity modifying protein 1) as crucial part for receptor specificity.

View Article and Find Full Text PDF

Most tumours have an aberrantly activated lipid metabolism that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism.

View Article and Find Full Text PDF

Soft-tissue sarcomas are rare, heterogeneous, and often aggressive mesenchymal cancers. Many of them are associated with poor outcome, partially because biomarkers that can identify high-risk patients are lacking. Studies on sarcomas are often limited by small sample-sizes rendering the identification of biomarkers difficult when focusing on individual cohorts.

View Article and Find Full Text PDF

Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data.

View Article and Find Full Text PDF

Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic fusions such as enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics.

View Article and Find Full Text PDF