Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi-kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment.
View Article and Find Full Text PDFMedulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis.Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma.
View Article and Find Full Text PDFIt is fair to say that if we ever wish to understand the anomalous properties of water, we need to study hydrogen bonds. Such a statement is based on statistical mechanics, which tells us how to calculate the structure and the thermodynamic properties of fluids and dense liquids from the forces between the particles. However, in the case of complex associated liquids, such calculations present a formidable--if not even insurmountable--challenge, which largely reflects our still-limited understanding of the hydrogen-bonding phenomenon itself.
View Article and Find Full Text PDFBack and forth: Femtosecond two-dimensional infrared exchange spectroscopy was used to study the dynamics of the reversal of an intramolecular hydrogen bond. The H-bond reversal resembles a flip-flop motion that is facilitated by two concerted disrotatory torsional isomerizations and that occurs on a time scale of about 2 ps.
View Article and Find Full Text PDFThe dynamics of vibrational energy relaxation (VER) of the aqueous azide anion was studied over a wide temperature (300 K ≤ T ≤ 663 K) and density (0.6 g cm(-3) ≤ ρ ≤ 1.0 g cm(-3)) range thereby covering the liquid and the supercritical phase of the water solvent.
View Article and Find Full Text PDFSupramolecular chemistry is intimately linked to the dynamical interplay between intermolecular forces and intramolecular flexibility. Here, we studied the ultrafast equilibrium dynamics of a supramolecular hydrogen-bonded receptor-substrate complex, 18-crown-6 monohydrate, using Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) spectroscopy in combination with numerical simulations based on molecular mechanics, density functional theory, and transition state theory. The theoretical calculations suggest that the flexibility of the macrocyclic crown ether receptor is related to an ultrafast crankshaft isomerization occurring on a time scale of several picoseconds and that the OH stretching vibrations of the substrate can serve as internal probes for the receptor's flexibility.
View Article and Find Full Text PDF