Publications by authors named "Martin O Bohn"

We demonstrate potential for improved multi-environment genomic prediction accuracy using structural variant markers. However, the degree of observed improvement is highly dependent on the genetic architecture of the trait. Breeders commonly use genetic markers to predict the performance of untested individuals as a way to improve the efficiency of breeding programs.

View Article and Find Full Text PDF

Understanding how plants adapt to specific environmental changes and identifying genetic markers associated with phenotypic plasticity can help breeders develop plant varieties adapted to a rapidly changing climate. Here, we propose the use of marker effect networks as a novel method to identify markers associated with environmental adaptability. These marker effect networks are built by adapting commonly used software for building gene coexpression networks with marker effects across growth environments as the input data into the networks.

View Article and Find Full Text PDF

Recruitment of microorganisms to the rhizosphere varies among plant genotypes, yet an understanding of whether the microbiome can be altered by selection on the host is relatively unknown. Here, we performed a common garden study to characterize recruitment of rhizosphere microbiome, functional groups, for 20 expired Plant Variety Protection Act maize lines spanning a chronosequence of development from 1949 to 1986. This time frame brackets a series of agronomic innovations, namely improvements in breeding and the application of synthetic nitrogenous fertilizers, technologies that define modern industrial agriculture.

View Article and Find Full Text PDF

Hydroxycinnamic acids, including ferulic acid and -coumaric acid, have been tied to multiple positive health and agronomic benefits. However, little work has been done to improve the concentration of hydroxycinnamic acids in maize. We evaluated a set of 12 commercially important maize ( L.

View Article and Find Full Text PDF

Maize is an important grain crop in the United States and worldwide. However, maize grain must be processed prior to human consumption. Furthermore, whole grain composition and processing characteristics vary among maize hybrids and can impact the quality of the final processed product.

View Article and Find Full Text PDF

The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products.

View Article and Find Full Text PDF

Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae.

View Article and Find Full Text PDF

Although previous studies have examined the concentration of various nutritional compounds in maize, little focus has been devoted to the study of commercial maize hybrids or their inbred parents. In this study, a genetically and phenotypically diverse set of maize hybrids and inbreds relevant to U.S.

View Article and Find Full Text PDF

Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline.

View Article and Find Full Text PDF

The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known.

View Article and Find Full Text PDF

As obligate parasites, entomopathogenic nematodes (EPN) rely on insect hosts to complete their development. In insect pest management, EPN infectiousness has varied a lot. A better understanding of their host-finding behavior in the rhizosphere is therefore crucial to enhance EPN potential in biological control.

View Article and Find Full Text PDF

Seven maize, Zea mays L., genotypes selected for native resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), larval feeding damage (SUM2068, SUM2162, CRW3(S1)C6, NSS1 x CRW3(S1)C6, PI583927, CRW2(C5), and AR17056-16) were evaluated along with three control maize genotypes in the field for plant damage, larval recovery, adult emergence, root size, and root regrowth. Larvae recovered were further analyzed for head capsule width and dry weight and adults for dry weight.

View Article and Find Full Text PDF

Owing to their sessile habits and trophic position within global ecosystems, higher plants display a sundry assortment of adaptations to the threat of predation. Unlike animals, nearly all higher plants can replace reproductive structures lost to predators by activating reserved growing points called axillary meristems. As the first step in a program aimed at defining the genetic architecture of the inflorescence replacement program (IRP) of Arabidopsis thaliana, we describe the results of a quantitative germplasm survey of developmental responses to loss of the primary reproductive axis.

View Article and Find Full Text PDF
Article Synopsis
  • The western corn rootworm is a significant pest affecting maize in the U.S. and Europe, with its population likely increasing due to nonrotated maize practices.
  • Current management options for this pest, especially in nontransgenic areas, are primarily limited to insecticides, highlighting the need for more diverse strategies.
  • Recent research has shown that hybrids derived from certain inbred maize lines exhibit less western corn rootworm damage, suggesting that topcrossing inbreds into hybrid materials may improve the screening process for pest resistance.
View Article and Find Full Text PDF

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is an established insect pest of maize (Zea mays L.) in North America. The rotation of maize with another crop, principally soybeans, Glycine max (L.

View Article and Find Full Text PDF