Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment.
View Article and Find Full Text PDFThe clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4 and CD8 T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)-agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample.
View Article and Find Full Text PDFCD4 T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8 T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8 T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4 T cells is less well understood. We have characterized the murine CD4 T cell response against a validated NeoAg (CLTC) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy.
View Article and Find Full Text PDFCD4+ T cells play a critical role in antitumor immunity via recognition of peptide antigens presented on MHC class II (MHC-II). Although some solid cancers can be induced to express MHC-II, the extent to which this enables direct recognition by tumor-specific CD4+ T cells is unclear. We isolated and characterized T cell antigen receptors (TCRs) from naturally primed CD4+ T cells specific for 2 oncoproteins, HPV-16 E6 and the activating KRASG12V mutation, from patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma, respectively, and determined their ability to recognize autologous or human leukocyte antigen-matched antigen-expressing tumor cells.
View Article and Find Full Text PDFInnovative cell-based therapies are important new weapons in the fight against difficult-to-treat cancers. One promising strategy involves cell therapies equipped with multiple receptors to integrate signals from more than one antigen. We developed a specific embodiment of this approach called Tmod, a two-receptor system that combines activating and inhibitory inputs to distinguish between tumor and normal cells.
View Article and Find Full Text PDFBackground: Mesothelin (MSLN) is a classic tumor-associated antigen that is expressed in lung cancer and many other solid tumors. However, MSLN is also expressed in normal mesothelium which creates a significant risk of serious inflammation for MSLN-directed therapeutics. We have developed a dual-receptor (Tmod™) system that exploits the difference between tumor and normal tissue in a subset of patients with defined heterozygous gene loss (LOH) in their tumors.
View Article and Find Full Text PDFUnlabelled: Neoantigens are among the most intriguing potential immuno-oncology targets because, unlike many cancer targets that are expressed on normal tissues, they are by definition restricted to cancer cells. Medicines directed at common neoantigens such as mutant KRAS are especially interesting because they may offer the convenience and cost of an off-the-shelf therapy. However, all common KRAS mutations produce proteins that differ from the wild type at a single amino acid, creating challenges for molecular discrimination.
View Article and Find Full Text PDFB cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet and T-bet memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet and T-bet hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely.
View Article and Find Full Text PDFThe goal of precision immunotherapy is to direct a patient's T cell response against the immunogenic mutations expressed on their tumors. Most immunotherapy approaches to-date have focused on MHC class I-restricted peptide epitopes by which cytotoxic CD8 T lymphocytes (CTL) can directly recognize tumor cells. This strategy largely overlooks the critical role of MHC class II-restricted CD4 T cells as both positive regulators of CTL and other effector cell types, and as direct effectors of antitumor immunity.
View Article and Find Full Text PDFT follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4 T cell responses and potent neutralizing antibody responses in mice and nonhuman primates.
View Article and Find Full Text PDFMature B cell pools retain a substantial proportion of polyreactive and self-reactive clonotypes, suggesting that activation checkpoints exist to reduce the initiation of autoreactive B cell responses. Here, we have described a relationship among the B cell receptor (BCR), TLR9, and cytokine signals that regulate B cell responses to DNA-containing antigens. In both mouse and human B cells, BCR ligands that deliver a TLR9 agonist induce an initial proliferative burst that is followed by apoptotic death.
View Article and Find Full Text PDFThe origin and nature of age-associated B cells (ABCs) in mice are poorly understood. In this article, we show that their emergence required MHC class II and CD40/CD40L interactions. Young donor B cells were adoptively transferred into congenic recipients and allowed to remain for 1 mo in the absence of external Ag.
View Article and Find Full Text PDFT-bet and CD11c expression in B cells is linked with IgG2c isotype switching, virus-specific immune responses, and humoral autoimmunity. However, the activation requisites and regulatory cues governing T-bet and CD11c expression in B cells remain poorly defined. In this article, we reveal a relationship among TLR engagement, IL-4, IL-21, and IFN-γ that regulates T-bet expression in B cells.
View Article and Find Full Text PDFA subset of B cells with unique phenotypic and functional features-termed Age-associated B cells (ABCs)-has recently been identified in both mice and humans. These cells are characterized by a T-BET driven transcriptional program, robust responsiveness to TLR7 and TLR9 ligands, and a propensity for IgG2a/c production. Beyond their age-related accumulation, these cells play roles in both normal and pathogenic humoral immune responses regardless of host age.
View Article and Find Full Text PDFThe HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms.
View Article and Find Full Text PDFThe BAFF family of receptors and ligands controls B cell homeostasis and selection. Recent studies reveal distinct sources and roles for systemic versus locally produced BAFF. Moreover, the notion that differential BAFF receptor expression patterns establish independent homeostatic and selective niches has been strengthened.
View Article and Find Full Text PDFWe examined whether age alters the emergence of high-affinity germinal center B (GCB) cells and switched memory B cells (swBmem) during a primary immune response to a thymus-dependent antigen, using a novel flow cytometric assay to distinguish relative BCR affinity. In young mice, high-affinity B cells predominate in the GCB pool and comprise a smaller proportion of the nascent swBmem pool two weeks after immunization. In aged mice, we observe significant reductions of high-affinity clones among GCB cells, but not nascent swBmem cells.
View Article and Find Full Text PDFAbsent T lymphocytes were unexpectedly found in homozygotes of a transgenic mouse from an unrelated project. T cell development did not progress beyond double-negative stage 1 thymocytes, resulting in a hypocellular, vestigial thymus. B cells were present, but NK cell number and B cell isotype switching were reduced.
View Article and Find Full Text PDFWe have discovered a distinct mature B-cell subset that accumulates with age, which we have termed age-associated B cells. These cells comprise up to 30% of mature B cells by 22 months. Despite sharing some features with other mature B-cell subsets, they are refractory to BCR and CD40 stimulation.
View Article and Find Full Text PDF