Floral nectar sugar composition is assumed to reflect the nutritional demands and foraging behaviour of pollinators, but the relative contributions of evolutionary and abiotic factors to nectar sugar composition remain largely unknown across the angiosperms. We compiled a comprehensive dataset on nectar sugar composition for 414 insect-pollinated plant species across central Europe, along with phylogeny, paleoclimate, flower morphology, and pollinator dietary demands, to disentangle their relative effects. We found that phylogeny was strongly related with nectar sucrose content, which increased with the phylogenetic age of plant families, but even more strongly with historic global surface temperature.
View Article and Find Full Text PDFExtensively managed grasslands are globally recognized for their high biodiversity value. Over the past century, a continuous loss and degradation of grassland habitats has been observed across Europe that is mainly attributable to agricultural intensification and land abandonment. Particularly insects have suffered from the loss of grassland habitats due to land-use change and the decrease in habitat quality, either due to an increase in livestock density, higher mowing frequency, and an increase in nitrogen fertilization, or by abandonment.
View Article and Find Full Text PDFTrait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2019
The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated.
View Article and Find Full Text PDFGlobal change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems.
View Article and Find Full Text PDFCross-system studies on the response of different ecosystems to global change will support our understanding of ecological changes. Synoptic views on the planet's two main realms, the marine and terrestrial, however, are rare, owing to the development of rather disparate research communities. We combined questionnaires and a literature review to investigate how the importance of anthropogenic drivers of biodiversity change differs among marine and terrestrial systems and whether differences perceived by marine vs.
View Article and Find Full Text PDFChemical communication plays a major role in the organisation of ant societies, and is mimicked to near perfection by certain large blue (Maculinea) butterflies that parasitise Myrmica ant colonies. The recent discovery of differentiated acoustical communication between different castes of ants, and the fact that this too is mimicked by the butterflies, adds a new component of coevolutionary complexity to a fascinating multitrophic system of endangered species, and it could inspire new ways to engage the public in their conservation.
View Article and Find Full Text PDFHabitat fragmentation may interrupt trophic interactions if herbivores and their specific parasitoids respond differently to decreasing connectivity of populations. Theoretical models predict that species at higher trophic levels are more negatively affected by isolation than lower trophic level species. By combining ecological data with genetic information from microsatellite markers we tested this hypothesis on the butterfly Maculinea nausithous and its specialist hymenopteran parasitoid Neotypus melanocephalus.
View Article and Find Full Text PDFEnvironmental change is not likely to act on biodiversity in a random manner, but rather according to species traits that affect assembly processes, thus, having potentially serious consequences on ecological functions. We investigated the effects of anthropogenic land use on functional richness of local hoverfly communities of 24 agricultural landscapes across temperate Europe. A multivariate ordination separated seven functional groups based on resource use, niche characteristics and response type.
View Article and Find Full Text PDF