J Chem Theory Comput
October 2024
We present and benchmark quantum computing approaches for calculating real-time single-particle Green's functions and nonlinear susceptibilities of Hamiltonian systems. The approaches leverage adaptive variational quantum algorithms for state preparation and propagation. Using automatically generated compact circuits, the dynamical evolution is performed over sufficiently long times to achieve adequate frequency resolution of the response functions.
View Article and Find Full Text PDFLight engineering of correlated states in topological materials provides a new avenue of achieving exotic topological phases inaccessible by conventional tuning methods. Here we demonstrate a light control of correlation gaps in a model charge-density-wave (CDW) and polaron insulator (TaSe)I recently predicted to be an axion insulator. Our ultrafast terahertz photocurrent spectroscopy reveals a two-step, non-thermal melting of polarons and electronic CDW gap via the fluence dependence of a longitudinal circular photogalvanic current.
View Article and Find Full Text PDFThe discovery of superconductivity in infinite-layer nickelates established another category of unconventional superconductors that shares structural and electronic similarities with cuprates. However, key issues of the superconducting pairing symmetry, gap amplitude and superconducting fluctuations are yet to be addressed. Here we utilize static and ultrafast terahertz spectroscopy to address these.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.