Publications by authors named "Martin Matzuk"

Despite 96 million years of evolution separating humans and rodents, 11 closely related reproductive tract-specific genes in humans-, , , , , , , , , , and -and the 13 reproductive tract-specific orthologous genes in mice, form highly conserved syntenic gene clusters indicative of conserved, combined critical functions. Further, despite significant progress toward a nonhormonal male contraceptive targeting the protein encoded by one of these genes, epididymal peptidase inhibitor (EPPIN), and associations found between mutations in and an increased risk of male infertility, neither EPPIN nor any closely related whey acidic protein four-disulfide core (WFDC) gene have been explored functionally. To clarify the involvement of WFDC genes in male fertility, we strategically used CRISPR/Cas9 to generate mice lacking 13, 10, 5, or 4 genes within the cluster and demonstrated that males with deletions of 13, 10, or 4 genes (Wfdc6a, Eppin, Wfdc8, and Wfdc6a) were sterile due to an arrest in spermatogenesis, preventing formation beyond round spermatids.

View Article and Find Full Text PDF

Background: Inhibition of sperm maturation in the epididymis is a promising post-testicular strategy for short-acting male contraceptives. It has been shown that ROS1, a receptor tyrosine kinase expressed in the epididymis, is essential for epididymal differentiation, sperm maturation, and male fertility in mice. However, it is unknown if inhibition of ROS1 suppresses male fertility reversibly.

View Article and Find Full Text PDF

Activin receptor type 1 (ACVR1; ALK2) and activin receptor like type 1 (ACVRL1; ALK1) are transforming growth factor beta family receptors that integrate extracellular signals of bone morphogenic proteins (BMPs) and activins into Mothers Against Decapentaplegic homolog 1/5 (SMAD1/SMAD5) signaling complexes. Several activating mutations in ALK2 are implicated in fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine gliomas, and ependymomas. The ALK2 R206H mutation is also present in a subset of endometrial tumors, melanomas, non-small lung cancers, and colorectal cancers, and ALK2 expression is elevated in pancreatic cancer.

View Article and Find Full Text PDF

Endometriosis, defined by the growth of endometrial tissues outside of the uterine cavity, is a global health burden for ∼200 million women. Patients with endometriosis usually present with chronic pain and are often diagnosed with infertility. The pathogenesis of endometriosis is still an open question; however, tissue stemness and immunological and genetic factors have been extensively discussed in the establishment of endometriotic lesions.

View Article and Find Full Text PDF

The development of novel non-hormonal male contraceptives represents a pivotal frontier in reproductive health, driven by the need for safe, effective, and reversible contraceptive methods. This comprehensive review explores the genetic underpinnings of male fertility, emphasizing the crucial roles of specific genes and structural variants (SVs) identified through advanced sequencing technologies such as long-read sequencing (LRS). LRS has revolutionized the detection of structural variants and complex genomic regions, offering unprecedented precision and resolution over traditional next-generation sequencing (NGS).

View Article and Find Full Text PDF

Semen liquefaction is a postejaculation process that transforms semen from a gel-like (coagulated) form to a water-like consistency (liquefied). This process is primarily regulated by serine proteases from the prostate gland, most prominently, prostate-specific antigen (PSA; KLK3). Inhibiting PSA activity has the potential to impede liquefaction of human semen, presenting a promising target for nonhormonal contraception in the female reproductive tract.

View Article and Find Full Text PDF

Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth.

View Article and Find Full Text PDF

Men or mice with homozygous serine/threonine kinase 33 () mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability.

View Article and Find Full Text PDF

EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that and expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value.

View Article and Find Full Text PDF

More than 1200 genes have been shown in the database to be expressed predominantly in the mouse testes. Advances in genome editing technologies such as the CRISPR/Cas9 system have made it possible to create genetically engineered mice more rapidly and efficiently than with conventional methods, which can be utilized to screen genes essential for male fertility by knocking out testis-enriched genes. Finding such genes related to male fertility would not only help us understand the etiology of human infertility but also lead to the development of male contraceptives.

View Article and Find Full Text PDF

Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We used high-resolution IMS with matrix-assisted laser desorption/ionization to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen.

View Article and Find Full Text PDF

Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci ( and ).

View Article and Find Full Text PDF

Each year, infertility affects 15% of couples worldwide, with 50% of cases attributed to men. It is assumed that sperm head shape is important for sperm-zona pellucida (ZP) penetration but research has yet to elucidate why. We generated testis expressed 46 () knockout mice to investigate the essential roles of TEX46 in mammalian reproduction.

View Article and Find Full Text PDF

Background: Pre-neutrophils, while developing in the bone marrow, transcribe the gene and synthesize Activin-A protein, which they store and release at the earliest stage of their activation in the periphery. However, the role of neutrophil-derived Activin-A is not completely understood.

Methods: To address this issue, we developed a neutrophil-specific Activin-A-deficient animal model ( mice) and analyzed the immune response to Influenza A virus (IAV) infection.

View Article and Find Full Text PDF

No effective screening tools for ovarian cancer (OC) exist, making it one of the deadliest cancers among women. Considering that little is known about the detailed progression and metastasis mechanism of OC at a molecular level, it is crucial to gain more insights into how metabolic and signaling alterations accompany its development. Herein, we present a comprehensive study using ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to investigate the spatial distribution and alterations of lipids in ovarian tissues collected from double knockout ( = 4) and triple mutant mouse models ( = 4) of high-grade serous ovarian cancer (HGSOC).

View Article and Find Full Text PDF

The bromodomain inhibitor (+)-JQ1 is a highly validated chemical probe; however, it exhibits poor pharmacokinetics. To guide efforts toward improving its pharmacological properties, we identified the (+)-JQ1 primary metabolite using chemical catalysis methods. Treatment of (+)-JQ1 with tetrabutylammonium decatungstate under photochemical conditions resulted in selective formation of an aldehyde at the 2-position of the thiophene ring [(+)-JQ1-CHO], which was further reduced to the 2-hydroxymethyl analog [(+)-JQ1-OH].

View Article and Find Full Text PDF

Endometriosis is a common and debilitating disease, affecting ∼170 million women worldwide. Affected patients have limited therapeutic options such as hormonal suppression or surgical excision of the lesions, though therapies are often not completely curative. Targeting receptor tyrosine kinases (RTKs) could provide a nonhormonal treatment option for endometriosis.

View Article and Find Full Text PDF

β-Lactamase enzymes hydrolyze and thereby provide bacterial resistance to the important β-lactam class of antibiotics. The OXA-48 and NDM-1 β-lactamases cause resistance to the last-resort β-lactams, carbapenems, leading to a serious public health threat. Here, we utilized DNA-encoded chemical library (DECL) technology to discover novel β-lactamase inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • - Endometrial decidualization is essential for successful pregnancies, driven by progesterone receptor and BMP-SMAD signaling pathways, though their interaction in preparing the endometrium is still unclear.
  • - Researchers created transgenic mouse lines to study how SMAD1 and SMAD5 integrate BMP signaling during early pregnancy, revealing distinct and overlapping roles for both proteins during the implantation phase.
  • - The study found a conserved genomic binding pattern for SMAD1, SMAD5, and progesterone receptors, and showed that reducing SMAD1/5 levels in human endometrial cells decreased critical markers for decidualization, emphasizing their importance in early pregnancy.
View Article and Find Full Text PDF

No effective screening tools for ovarian cancer (OC) exist, making it one of the deadliest cancers among women. Considering little is known about the detailed progression and metastasis mechanism of OC at a molecular level, it is crucial to gain more insights on how metabolic and signaling alterations accompany its development. Herein, we present a comprehensive study using ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to investigate the spatial distribution and alterations of lipids in ovarian tissues collected from double knockout ( = 4) and a triple mutant mouse models ( = 4) of high-grade serous ovarian cancer (HGSC).

View Article and Find Full Text PDF

Background: Ovochymase 2 (Ovch2) is an epididymis-specific gene that is required for male fertility. While a multitude of reproductive tract-specific genes required for male fertility have been identified, OVCH2 is thus far the first protein required for male fertility that contains Complement C1r/C1s, Uegf, Bmp1 (CUB) domains located in tandem in the C-terminus of the protein. Identifying the functional significance of this unique domain has implications in better understanding fertility and infertility and as a potential contraceptive target.

View Article and Find Full Text PDF

The development of SARS-CoV-2 main protease (M) inhibitors for the treatment of COVID-19 has mostly benefitted from X-ray structures and preexisting knowledge of inhibitors; however, an efficient method to generate M inhibitors, which circumvents such information would be advantageous. As an alternative approach, we show here that DNA-encoded chemistry technology (DEC-Tec) can be used to discover inhibitors of M. An affinity selection of a 4-billion-membered DNA-encoded chemical library (DECL) using M as bait produces novel non-covalent and non-peptide-based small molecule inhibitors of M with low nanomolar K values.

View Article and Find Full Text PDF

Objective: To determine whether TOP5300, a novel oral follicle-stimulating hormone (FSH) receptor (FSHR) allosteric agonist, elicits a different cellular response than recombinant human FSH (rh-FSH) in human granulosa cells from patients undergoing in vitro fertilization.

Design: Basic science research with a preclinical allosteric FSHR agonist.

Setting: University hospital.

View Article and Find Full Text PDF

Wee1-like protein kinase 2 (WEE2) is an oocyte-specific protein tyrosine kinase involved in the regulation of oocyte meiotic arrest in humans. As such, it has been proposed as a candidate for non-hormonal female contraception although pre-clinical models have not been reported. Therefore, we developed two novel knockout mouse models using CRISPR/Cas9 to test loss-of-function of Wee2 on female fertility.

View Article and Find Full Text PDF

The quest for a non-hormonal male contraceptive pill for men still exists. Serine protease 37 (PRSS37) is a sperm-specific protein that when ablated in mice renders them sterile. In this study we sought to examine the molecular sequelae of PRSS37 loss to better understand its molecular function, and to determine whether human PRSS37 could rescue the sterility phenotype of knockout (KO) mice, allowing for a more appropriate model for drug molecule testing.

View Article and Find Full Text PDF